MIPS ISAs & Other Features
History, why’s, mistakes & omissions
but one of the longer survivors!
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Introduction

 Overview of MIPS Chip History, especially 1984-2000
 Inthe beginning — design issues in a crazy year
 Primary Instruction Set Architectures (ISAs) (~2 too many)

Stanford MIPS (~1982) 4MHz
- 32-bit ISA, 16 registers, word-addressed, no halfwords, MMU (ugh)

MIPS-I: R2000 (1986, 8=>16.7Mhz) R3000 (1988, 25=>40Mhz)
- 32 bit ISA, 32-bit datapaths; SMP, fault-tolerant (FT) possible

MIPS-II: R6000 (1990, 60, 80Mhz, ECL)
- 32-bit ISA, more instructions, with 64-bit datapaths

MIPS-III: R4000 (1992), R4400(1993), R4300i (1995, low-cost, N64)
- 64/32-bit 1SAs, 32 FP regs, 64-bit datapaths; SMP, FT much better

MIPS-IV: R8000 (SGI 1994), R10000 (1996, 4-issue speculative)
- FP MADD, etc; Prefetching; supercomputing; scalability; latency

 Mistakes, maybes, or wishes had there been more time
« ISA design very tough game, many try, few survive even 1 decade



Instruction Set Architectures - History from 1989

« Hot Chips 1 - 1989 https://www.hotchips.org/archives/hc01/
* Intel 486 (X86: CISC with increasingly RISC-like internals)
 Motorola 68040 (Freescale->NXP ColdFire, RISCized controllers)
« Sun SPARC - CMOS, ECL, GaAs—(Oracle quit, Fujitsu still doing)
« MIPS (1986 R2000, 1988 R3000)
+Metorela88K
+ AMD-29000(weord-addressed)
= Intergraph Clipper
RISC vs CISC from comp.arch https://yarchive.net/comp/risc_definition.html

Active in 1989, but not at Hot Chips: HPPA-RISC, early ARM
Later

« POWER / PowerPC; Alpha-{weordaddressed-atfirsty,trteHtanium

+Mainrframe{except ~1964 IBM S/360) & minicomputeriSAs~gohe
« Tensilica (1997), part of Cadence since 2013

. RISC V (2010-)
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Brief Review (from my 1989 Hot Chips talk on R3000)

5.2
Direct-mapped

SRAM Caches,

32-bit access
D-cache
Write-through
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Brief Review (from my 1989 Hot Chips talk on R3000)

R3000 BLOCK DIAGRAM

5.4

Software-Managed

Translation Registers Local Shifter
Lookaside ey MultiplierDivider
Buffer (TLB) ... 64 Entry Address Adder
unusual, many : ne :
thought crazy PC Increment/Mux

Address (16) Data (32+4)

-------------------------------------------------------------------------
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Brief Review (from my 1989 Hot Chips talk on R3000)

User State Registers

(4] ro=0 fo f1
r f2 13
* 130 a1
ra1 link 16 64-bit Floating Point Registers
32 32-bit Registers
:: fesr
Control & Status r
Mul & Div Result Registers egisie
[’;%w ... NO CONDITION CODES AND A
Program Counter P

81/89 Mash HOT CHIPS 11 THE POWER OF RISC IS IN THE SYSTEM @mips




Brief Review (from my 1989 Hot Chips talk on R3000)

Instruction Formats

ktype: ALU immediate, Memory Op and Branch
op rs r immediate
6 5 5 16

R-type: Register to Register
op s n rd samt func *
6 5 5 5 5 6

J-type: Long jump, word addressed
op target
6 26

SIMPLE, REGULAR FORMATS ALLOW FAST DECODE & PIPELINE
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Brief Review (from my 1989 Hot Chips talk on R3000)

INSTRUCTION SET |

R e e P e e e
LOAD/STORE ALU
Byte addressed, Bi-endian Add, Sub, Logicals
Word, Halfword, Byte Rd:=Rs op Rt, 3 register operations
Signed, Unsigned Rt:=Rs op L, 2 register + 16 bit immediate
Unaligned References Impact of compare & branch on arithmatic ops:
Base + 16 bit Offset Add/Sub with no trap, unsigned arith

Add/Sub with trap, ADA, Pascal, LISP

-BRANCHES

No Condition Codes; Compare and Branch
One Instruction Branch on:

A<, A<0, A>0, A>0, A=B, A=B
When needed, two instructions for: MULTIPLY/DIVIDE

A<B, A<B, A>B, A>B Compile most constants with shft/add/sub
Branches execute next instruction before branching Hardware accelerates remaining
Also Jumps: J, JAL, JR, JALR 12 cycle mult, 35 cycle divide

64 bit product, or quotient/remainder
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Brief Review (from my 1989 Hot Chips talk on R3000) |4
cycleli | cycle2 | cycle3 | cycled | cycle5 | cycle6 | cycle7
o1 [02 |01 |02 | 01 | 02 01.]52' o1 |92 [ @1 |02 | 01 | 02
[1Cache [ 1D | _ALU (we] |ad0ms,
. F ADD RF _|DvVA DTLB
Single ISsuel IVA|ITLB e Back-to-Back Operations
5-sta Ipeli
ge plpelne [Toache W8]
Forwarding, but LW Load Delay
No hazard-stall
for Loads, [wa ]
Assembler tried BNE B Cuchs
To fill Ic?ad-delay — G
Slot or insert NOP. | |ova D Cachs
Pipeline granch pelay _m
“1Cache ALY [we ]
TR RF |DVA D Cachs
A |mLB

10



Guidelines

When in doubt, leave it out ... usually

Most additions had to be justified by
Performance ... 1% from simulations
Functionality, like SYSCALL

MIPS ISA designed from C, Fortran, Pascal statistics, with a little thought
about PL/I, COBOL. Nothing special for Lisp, Smalltalk.
Contrast: HP PA RISC had a few instructions to help COBOL, given market.

Fallacy:Write in assembly language to obtain the highest performance. | 2.18
In early MIPS days, | wrote assembly versions of strcpy, strcmp, etc...
because one always did that ... and threw them out. C compiler code as good.

Always constrained by previous choices: path dependency

Try to think ahead to likely future implementations

Minimize implementation artifacts (we didn’t always do that)
Load-delays ... not so good, should have had hazard detect and stall 3.5
Implementation of multiply & divide

32x32-bit FP registers was worst mistake, should have been 32x64-bit

11



In the beginning — Design Issues - R2000 (1986), R3000 (1988)

* Design requirements

Good for multiple UNIX versions, other OS (embedded)
CPU + efficient FPU connection + SRAM cache

Crazed schedule for R2000 (4Q84 — 3Q85):
create new architecture ... systems ... software < 2 years

Manufacturable die in 2 micron (2,000 nm!) CMOS, 144-pin package

« Design implications

Integer unit, big full-associative TLB, on-chip cache control
External FPU, direct access to/from SRAM & DRAM
Minimalist design “only just barely works”

Die space and pins limited

110K transistors in CPU (1986), 70K in R2010 FPU (1987)
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RISC, MIPS and the Motion of Complexity (1986)

« Movement of complexity among chips, hardware system, compilers & OS

Figure 4 shows the design style that we actu-
ally employ. Everyone owns a part of the
complexity that they find tolerable. A small
part has disappeared (to the left) because
groups have found cases where they could
work together 1o lessen the total complexity.
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MIPS-1 (R2000, R3000) 2

4Q84 Start with Stanford MIPS experience, efiginat-idea—commerciatize-that

« 16 reqisters, some 16-bit instructions
 Word-addressed to save gate delay, no halfword operations (eek!)
«  MMU not from OS people!
« Academic chips can/should explore ideas, commercial needs 100%
12/84 Make competitive, think about IBM 801 papers, commercial realities
« 32 regqisters, 32-bit-only instructions
* Byte-addressed, words, halfwords (Hennessy changed mind!)
1/85 — 2/85: Fine-tune user ISA via compiler analysis & functional needs

3/4/85 Instructions
multiply & divide integer hardware added
load-byte/half unsigned kept
variable shifts kept
ADDIU added
LUI (yes)
ORUI (rejected)
Extends (byte, halfword) rejected, given signed loads, SLL, SRA
Opcode X may or may not be worthwhile, depending on existing ops
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MIPS-I| 2

3/85: byte order and alignment discussions; Bi-Endian for Daisy (!) | 2

3/85-7/85: interfaces, kernel features; FP specs (COPL1, trapping)
Some CPUs kept “FP registers dirty”, better to trap, lower overhead

4/85: MMU
COPO eliminated special operations, same trapping mechanisms
4/21/85 register conventions tweaked
3Q85: last ISA tweaks
LWL, LWR, SWL, SWR — worry about unaligned Fortran variables
4Q85 Tapeout, first chips, Christmas present
1Q-2Q86 debug OS & system, 15t demoes
4Q86 ship systems to customers
2Q87 R2010 FPU
Insane schedule ... and done with MacProject on my 128K Mac.
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R2000 (1986), R3000 (1988)

CPU — Compiler interactions

User-level Instruction Set Architecture (ISA)
mostly spec’d by compiler writers + performance analysis
Assumed global optimizing compiler (from Fred Chow’s work @ Stanford)

UNIX kernel wish to be optimized (1Q86, 15t systems)

CPU provided uncached attribute for devices

ANSI C “volatile” attribute just in time!

Horrific bug — needed binary search on optimized UNIX kernel
Cache bugs with device drivers for tape drives

New ISA, new chips, new system, new UNIX port, ~new compilers
Don’t do this unless you absolutely must!
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R2000 (1986), R3000 (1988)

 CPU - Operating system interactions

* Integrating Virtual Memory, TLBs, Caches (P&H) 5.4
Physical-indexed, physical-tagged caches to ease OS ports, no aliasing
explicit cache management not widely present in 1985

MMU/exceptions/COPO mostly spec’d by OS people (me+2 others)
Software TLB refill for flexibility & paranoia of experienced OS people
from past MMU/exception horrors ... paranoia rewarded!

Months of BSD UNIX, then AT&T UNIX port found new bug, S/W fix

* | think only MIPS & HP did this, many thought nuts, but works fine. (P&H)
| wrote TLB miss handler, then tuned with minimal hardware for speed
CPU had no hardware for finding & accessing Page Tables in memory.

* Omitted: many CPUs had hardware-set reference & dirty bits.
UNIXes sometimes turned those off anyway, as in wanting to trap first
write to a page for Copy-on-Write policies.
We told logic designers we did not want those features (relief).
Possible to do SMP OS, just barely (DeMoney, Moore, Mashey (1986))

- Sometimes careful omission of features = better in every way 17



R2000 (1986), R3000 (1988) 6or7s

« CPU - Hardware interactions for Symmetric MultiProcessing (SMP)
« Cache-control on-chip, not outside logic

« Physical-address, physical tags helped
R2000: SMP possible, very tricky timing, SGI made it work, barely
R3000: much easier, 2 more external signals

« By 1988 feasible to ship cache-coherent SMP, even in workstation-sizes

18



MIPS-I| 2

8/21/87: Additions to user ISA for R6000 (multichip ECL implementation)
Much performance modeling, analysis of real code
¥Y-1-lLoad-deuble-fstore-double-integer (later removed when 64-bit known)

Y 2. Load double / store double floating coprocessor (Yes!)
Y 3. Branch-likely

N 4. Branch-unlikely
Y 5. Convert with explicit rounding mode
N 6. Eliminate delay slot after loads

Y 7. Load-linked — Store Conditional (flexible synchronization) 2.11
N 8. Floating-load immediate
Y 9. SQRT

Y 10.Trap instructions for ADA
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MIPS-III

40Q88: Decide R4000 would be 64/32-bit extension of MIPS-II
10Q89: more details

4/89 C models, start of discussions for “long long”

Later, 1991/1992 this got settled by industry, defacto standard

John Mashey, The Long Road to 64 Bits (2006)
http://queue.acm.org/detail.cfm?id=1165766 OR
http://cacm.acm.org/magazines/2009/1/15667-the-long-road-to-64-bits/fulltext

C 99 Rationale — long long p.37-41
http://www.open-std.orqg/jtcl/sc22/wgld/www/C99RationaleV5.10.pdf

4Q91 — superpipelined, single-issue, on-chip L1 caches, control for L2,
15t 64-bit microprocessor, SMP and FT features

R4000 would have been 3-metal 2-issue superscalar if could have waited,
which could have happened if we’d done an “R3500” with more pins, demuxed
busses, to get to 50/66Mhz about the same time as HP Snakes, ~1990.

Other ~1991 superscalar chips got better floating point, worrisome to SGI

20
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MIPS-IV 10

R8000 (TFP) got started at SGI, multi-chip set, good at linear algebra
2092 SGI acquired MIPS

FP MADD, conditional moves, prefetch instructions, 4-issue superscalar
Very good for some kinds of floating point codes, but finicky

R1X000 much more flexible, lower cost, rapidly outperformed R8000
4-issue, speculative, out-of-order superscalar

Later designs, “Beast” & “Alien” never were completed, in favor of - Itanium.
Too bad: synchronization in big multiprocessors, Coherent-no-allocate caching.

21



Mistakes: my opinion, not too many bad ones

R2000/R2010 32-bit floating point registers & only 32-bit float Id/st 3.5
« 32 singles = 16 doubles, agony for years
« ALWAYS PLAN FOR BIGGER BUSSES
« Hard call to have 64-bitters, given implied need for 64-bit float |d/st
« But might have avoided wish for MIPS-II, a really good thing
 INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS
Load delay slots (instead of hardware hazard stalls)

* Quickly fixed by R4000, but binaries last for long time st

« Bothersome NOPs for embedded footprint, UNIX kernel

 INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS
Branch delay slots 48

* OK at the time, some pain later, and some odd bugs in R4000
« Obviated by branch prediction, branch folding

MIPS = Microprocessor without Interlocked Pipeline Stages
« Maybe, but we had them for MFLO/MFHI & floating point

» Over time, interlocks appeared .... might have been better if started
Load stall, MUL / DIV operations that put results in GP registers, not HzléLO



Not too bad, could have been better

 LWL/LWR SWL/SWR - {Load, store} Word {Left, Right}
Worry over legacy unaligned code, designers said byte networks existed
LWL/LWR oddly read destination register, merged data, unlike other Loads
SWL/SWR might need extra bit on bus for 3-byte cases
| should have fought harder for solution on next page, but no time

» Unexpectedly useful for COBOL & PL/I ... but not big markets for us
» Integer multiply/divide .. Good to have hardware, not just steps, but...

* Violated normal rule of language use: 32 op 32 - 32, not 64 bits

« 32x32 => 64-bit product and 32/64 => 32-quotient & 32-remainder

Better (Alpha): Multiply Lower, Multiply Upper, Quotient, Remainder
Interlock on use would have been better

Irregularity & extra visible state caused pain,extra bit for R10000 later

« Lack of synchronization instructions in R2000/R3000
* OK at time, and done on purpose (nobody liked anything)

* Needed standard user libraries for test-and-set, etc, fast-path syscalls.
| thought about this 2Q85, but life got hectic, and then it was too late.
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Not mistakes, but really could have done better

» More interlocks lessen pipeline visibility — loads, eliminate LO & HI

 LWL/LWR/SWL/SWR use by compiler switches ... wrong
For mem?*, str* functions, might have fought harder for other ops

« Third-party software vendors want one binary, hard to move
Real problem for general-purpose systems, much less for embedded

« User-level intercept: if we’d had time, something like this for MIPS-I
« Dedicate ~2-3 more integer registers

* Intercept unimplemented opcode, transfer to emulation library
Compile/link code with newest opcodes, but library to make work

 Intercept unaligned references, and by run-time switch
1) Fault, since it usually is (S/360 faulted, S/370 didn’t, we asked!)
2) Fix and return, just slow
3) Record, fix and return, slow, but helps find bad code

« May have been helpful for LISP, Smalltalk, ie.., tags
normal operation fast, rare cases can be handled

* Ideally, just MIPS-I (R2000, R3000, “R3500") and
MIPS-1V (2-issue superscalar “R4500") in 64/32 forms

ECL R6000 decision caused cascade of challenges, unfortunately
24



History — proliferation, but ripple effects from decisions ~1996

19M+ units in 1996, 35M+ units in 1997!!!; 80+ versions
What once was high-end chip (R3000) ... now <$20 versions. ;

 [I've lost track since, but in 2010s, ~800 Million MIPS 32 or 64-bit cores
were shipped / year. (Smaller than ARM, but still Billions out there.)




The irony of ARM’s embedded focus/success by Dave Jaggar

 htips://len.wikipedia.org/wiki/Dave Jaggar

“David Jaggar ...computer scientist who was responsible for the development of

the ARM architecture between 1992 and 2000, redefining it from a low-cost workstation
processor to the dominant embedded system processor. ...

Jaggar was born in 1967 in Christchurch, New Zealand ... attended the University of
Canterbury, where he gained a Bachelor of Science degree in Computer Science in
1987 and a Master of Science degree in Computer Science in 1991. His Master's thesis
was titled A Performance Study of the Acorn RISC Machine, in which he exposed
shortcomings of the early ARM designs.

Jaggar is best known for creating the Thumb architecture to re-position ARM as
an embedded processor.”

My NZ lecture on RISC design inspired him, but also convinced him that ARM
couldn’t match MIPS performance, so should aim for lower-power, denser code =
great success in nascent market for personal devices!! Argh!!

He told this story at recent Stanford talk and presented nice gift to me

* Lecture at Stanford — 05/29/19

https://systemx.stanford.edu/events/seminar/20190529/bonus-lecture-arm-
microprocessor-my-part-its-downfall
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Dave Jaggar’s gift to me for inspiring him

He said he’d also looked for Patterson cognac, could find none
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Conclusions

Baggage accumulates, so start small

Academic computer architecture can/should explore features,
commercial architecture must solve 100% of (sometimes boring) issues

Seemingly-minor decisions can have decades-long effects
In 1985, one never would have expected MIPS ISA to be along survivor
Look at RISC-V, some elements will be familiar

Advertisement: visit Computer History Museum, Mountain View, CA
You can see computers, chips, software, etc.
https://computerhistory.org/
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