
MIPS ISAs & Other Features

History, why’s, mistakes & omissions

but one of the longer survivors!

John R. Mashey JohnMashey@yahoo.com, @JohnMashey

February 24, 2017 (updated from 02/24/17, 11/20/97)

UC Santa Barbara – CMPSC 154 – special edition

mailto:JohnMashey@yahoo.com

Speaker – John R. Mashey -
en.wikipedia.org/wiki/John_Mashey

• Small farm in (hilly) Western Pennsylvania N of Pittsburgh, founded ~1850

– Climate matters; keep topsoil; fix things; recycle; Liebig’s Law. smog, oil, coal, Marcellus shale

• Pennsylvania State University, 1964-1973, BS Math, MS/PhD CMPSC

• Bell Labs 1973-1983, early UNIX, MTS → Supervisor

– Programmer’s Workbench, shell programming, text processing,

workload measurement/tuning in first UNIX computer center, etc

– Created & managed group with software + cognitive psychologists

• Convergent Technologies 1983-1984 ($400M), MTS → Director Software

• MIPS Computer Systems 1985-1992, ($150M) Mgr. OS → VP Systems Technology

– System coprocessor, TLB, interrupt-handling; byte addressing(!);64-bit; Hot Chips 1989-2016

– MIPS Performance Brief editor; a SPEC benchmarking group founder 1988- (science, statistics)

• Silicon Graphics 1992-2000 ($3B),Dir. Systems Technology→ VP & Chief Scientist

– MIPS R10000 & later architecture, including performance counters & software

– ccNUMA system architecture (NUMAflex in Origin3000, Altix); supercomputers for NCAR, etc

– Performance issues in HPC, DBMS; technology forecasting, software strategy, Big Data

– Evangelist work with sales/marketing, business development, alliances, scientists

• 2001- Typical Silicon Valley “Semi-retired” some consulting for high-tech co’s, VCs
Computer History Museum Trustee; Travel; ski in B.C.; hike; bike; occasionally write articles, do talks

Technical advisory boards … interest in climate 2001-, and then a weird hobby 2007-

Help climate scientists, expose machinery of doubt, blog, rocks in gears. 2012- CTCRE @ UCSF

• Committee for Skeptical Inquiry (CSI) Scientific/Technical Consultant

New

Jersey

Silicon

Valley

PA

1

❤☹1995

http://en.wikipedia.org/wiki/John_Mashey

A few references

2

• Hennessy, J. L., Jouppi, N., Baskett, F. and Gil, J., (1981) “MIPS: A VLSI Processor Architecture,”

Proc. CMU Conference on VLSI Systems and Computations, pp.337-346, Computer Science Press,

http://i.stanford.edu/pub/cstr/reports/csl/tr/81/223/CSL-TR-81-223.pdf

• John Hennessy, Norman Jouppi, Steven Przybylski, Christopher Rowen, Thomas Gross, (Feb 1983)

“Design of a High Performance VLSI Processor”, Technical Report No. 236, Stanford University.

http://i.stanford.edu/pub/cstr/reports/csl/tr/83/236/CSL-TR-83-236.pdf

2-micron, 1-metal nMOS, 4MHz, word-addressing, no halfwords, no “real” MMU

• Hennessy, J. L., (1984), VLSI Processor Architecture, IEEE Transactions on Computers, C-33, no

12, pp. 1221-1246. http://ieeexplore.ieee.org/abstract/document/1676395/

• J. R. Mashey, RISC, MIPS, and the Motion of Complexity, UniForum February1986 Proceedings,

Anaheim, CA pp. 116-124

https://books.google.com/books/about/UniForum_1986.html?id=koY_AQAAIAAJ

• C.Rowen,L.Crudele,D.Freitas,C.Hansen,E.Hudson, J.Kinsel, J.Moussouris, S.Prybylksi, T. Riordan,

RISC VLSI Design for System-Level Performance, VLSI Systems Design March 1986 pp.81-88.

• J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E. Hudson, R. March, S. Prybylski, T. Riordan, C.

Rowen, D. Van’t Hof, A CMOS RISC Processor with Integrated System Functions,

COMPCON, page 126-131. IEEE Computer Society, (March 4-6 1986)

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1663029

• F. Chow, M. Himelstein, E. Killian, L. Weber, Engineering a RISC Compiler System,

COMPCON, page 132-137. IEEE Computer Society, (March 4-6 1986)

• M. DeMoney, J. Moore, J. Mashey, Operating Systems Support on a RISC,

COMPCON, page 138-143. IEEE Computer Society, (March 4-6 1986)

• David A. Patterson, John L. Hennessy Computer Organization and Design –

The Hardware/Software Interface (2013, 4th Edition) or MIPS 5th Edition(2017)

Stanford

MIPSco

Section

http://i.stanford.edu/pub/cstr/reports/csl/tr/81/223/CSL-TR-81-223.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/83/236/CSL-TR-83-236.pdf
http://ieeexplore.ieee.org/abstract/document/1676395/
https://books.google.com/books/about/UniForum_1986.html?id=koY_AQAAIAAJ
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1663029

Introduction

3

• Overview of MIPS Chip History, especially 1984-2000

• In the beginning – design issues in a crazy year

• Primary Instruction Set Architectures (ISAs) (~2 too many)

• Stanford MIPS (~1982) 4MHz

- 32-bit ISA, 16 registers, word-addressed, no halfwords, MMU (ugh)

• MIPS-I: R2000 (1986, 8=>16.7Mhz) R3000 (1988, 25=>40Mhz)

- 32 bit ISA, 32-bit datapaths; SMP, fault-tolerant (FT) possible

• MIPS-II: R6000 (1990, 60, 80Mhz, ECL)

- 32-bit ISA, more instructions, with 64-bit datapaths

• MIPS-III: R4000 (1992), R4400(1993), R4300i (1995, low-cost, N64)

- 64/32-bit ISAs, 32 FP regs, 64-bit datapaths; SMP, FT much better

• MIPS-IV: R8000 (SGI 1994), R10000 (1996, 4-issue speculative)

- FP MADD, etc; Prefetching; supercomputing; scalability; latency

• Mistakes, maybes, or wishes had there been more time

• ISA design very tough game, many try, few survive even 1 decade

Instruction Set Architectures - History from 1989

4

• Hot Chips 1 – 1989 https://www.hotchips.org/archives/hc01/

• National Semiconductor NS32GX32 (NS32032, etc)

• Intel 486 (X86: CISC with increasingly RISC-like internals)

• Motorola 68040 (Freescale→NXP ColdFire, RISCized controllers)

• Sun SPARC – CMOS, ECL, GaAs (Oracle quit, Fujitsu still doing)

• MIPS (1986 R2000, 1988 R3000)

• Motorola 88K

• Intel i860, Intel i960

• AMD 29000 (word-addressed)

• Intergraph Clipper

RISC vs CISC from comp.arch https://yarchive.net/comp/risc_definition.html

Active in 1989, but not at Hot Chips: HP PA-RISC, early ARM

Later

• POWER / PowerPC; Alpha (word addressed at first), Intel Itanium

• Mainframe (except ~1964 IBM S/360) & minicomputer ISAs ~gone

• Tensilica (1997), part of Cadence since 2013

• RISC V (2010-)

https://www.hotchips.org/archives/hc01/
https://yarchive.net/comp/risc_definition.html

Brief Review (from my 1989 Hot Chips talk on R3000)

5

5.2

Direct-mapped

SRAM Caches,

32-bit access

D-cache

Write-through

Brief Review (from my 1989 Hot Chips talk on R3000)

6

5.4

Software-Managed

Translation

Lookaside

Buffer (TLB) …

unusual, many

thought crazy

Brief Review (from my 1989 Hot Chips talk on R3000)

7

2

Brief Review (from my 1989 Hot Chips talk on R3000)

8

2

Brief Review (from my 1989 Hot Chips talk on R3000)

9

2

Brief Review (from my 1989 Hot Chips talk on R3000)

10

4

Single-issue

5-stage pipeline

Forwarding, but

No hazard-stall

for Loads,

Assembler tried

To fill load-delay

Slot or insert NOP.

Guidelines

11

• When in doubt, leave it out … usually

• Most additions had to be justified by

Performance … 1% from simulations

Functionality, like SYSCALL

• MIPS ISA designed from C, Fortran, Pascal statistics, with a little thought

about PL/I, COBOL. Nothing special for Lisp, Smalltalk.

Contrast: HP PA RISC had a few instructions to help COBOL, given market.

• Fallacy:Write in assembly language to obtain the highest performance.

In early MIPS days, I wrote assembly versions of strcpy, strcmp, etc…

because one always did that … and threw them out. C compiler code as good.

• Always constrained by previous choices: path dependency

• Try to think ahead to likely future implementations

Minimize implementation artifacts (we didn’t always do that)

Load-delays … not so good, should have had hazard detect and stall

Implementation of multiply & divide

32x32-bit FP registers was worst mistake, should have been 32x64-bit

2.18

3.5

In the beginning – Design Issues - R2000 (1986), R3000 (1988)

12

• Design requirements

• Good for multiple UNIX versions, other OS (embedded)

• CPU + efficient FPU connection + SRAM cache

• Crazed schedule for R2000 (4Q84 – 3Q85):

create new architecture … systems … software < 2 years

• Manufacturable die in 2 micron (2,000 nm!) CMOS, 144-pin package

• Design implications

• Integer unit, big full-associative TLB, on-chip cache control

• External FPU, direct access to/from SRAM & DRAM

• Minimalist design “only just barely works”

• Die space and pins limited

• 110K transistors in CPU (1986), 70K in R2010 FPU (1987)

RISC, MIPS and the Motion of Complexity (1986)

13

• Movement of complexity among chips, hardware system, compilers & OS

MIPS-I (R2000, R3000)

14

4Q84 Start with Stanford MIPS experience, original idea: commercialize that

• 16 registers, some 16-bit instructions

• Word-addressed to save gate delay, no halfword operations (eek!)

• MMU not from OS people!

• Academic chips can/should explore ideas, commercial needs 100%

12/84 Make competitive, think about IBM 801 papers, commercial realities

• 32 registers, 32-bit-only instructions

• Byte-addressed, words, halfwords (Hennessy changed mind!)

1/85 – 2/85: Fine-tune user ISA via compiler analysis & functional needs

3/4/85 Instructions

multiply & divide integer hardware added

load-byte/half unsigned kept

variable shifts kept

ADDIU added

LUI (yes)

ORUI (rejected)

Extends (byte, halfword) rejected, given signed loads, SLL, SRA

Opcode X may or may not be worthwhile, depending on existing ops

2

MIPS-I

15

3/85: byte order and alignment discussions; Bi-Endian for Daisy (!)

3/85-7/85: interfaces, kernel features; FP specs (COP1, trapping)

Some CPUs kept “FP registers dirty”, better to trap, lower overhead

4/85: MMU

COP0 eliminated special operations, same trapping mechanisms

4/21/85 register conventions tweaked

3Q85: last ISA tweaks

LWL, LWR, SWL, SWR – worry about unaligned Fortran variables

4Q85 Tapeout, first chips, Christmas present

1Q-2Q86 debug OS & system, 1st demoes

4Q86 ship systems to customers

2Q87 R2010 FPU

Insane schedule … and done with MacProject on my 128K Mac.

2

2

R2000 (1986), R3000 (1988)

16

• CPU – Compiler interactions

• User-level Instruction Set Architecture (ISA)

mostly spec’d by compiler writers + performance analysis

Assumed global optimizing compiler (from Fred Chow’s work @ Stanford)

• UNIX kernel wish to be optimized (1Q86, 1st systems)

CPU provided uncached attribute for devices

ANSI C “volatile” attribute just in time!

Horrific bug – needed binary search on optimized UNIX kernel

Cache bugs with device drivers for tape drives

New ISA, new chips, new system, new UNIX port, ~new compilers

Don’t do this unless you absolutely must!

R2000 (1986), R3000 (1988)

17

• CPU – Operating system interactions

• Integrating Virtual Memory, TLBs, Caches (P&H)

Physical-indexed, physical-tagged caches to ease OS ports, no aliasing

explicit cache management not widely present in 1985

• MMU/exceptions/COP0 mostly spec’d by OS people (me+2 others)

Software TLB refill for flexibility & paranoia of experienced OS people

from past MMU/exception horrors … paranoia rewarded!

Months of BSD UNIX, then AT&T UNIX port found new bug, S/W fix

• I think only MIPS & HP did this, many thought nuts, but works fine. (P&H)

I wrote TLB miss handler, then tuned with minimal hardware for speed

CPU had no hardware for finding & accessing Page Tables in memory.

• Omitted: many CPUs had hardware-set reference & dirty bits.

UNIXes sometimes turned those off anyway, as in wanting to trap first

write to a page for Copy-on-Write policies.

We told logic designers we did not want those features (relief).

Possible to do SMP OS, just barely (DeMoney, Moore, Mashey (1986))

• Sometimes careful omission of features → better in every way

5.4

R2000 (1986), R3000 (1988)

18

• CPU – Hardware interactions for Symmetric MultiProcessing (SMP)

• Cache-control on-chip, not outside logic

• Physical-address, physical tags helped

R2000: SMP possible, very tricky timing, SGI made it work, barely

R3000: much easier, 2 more external signals

• By 1988 feasible to ship cache-coherent SMP, even in workstation-sizes

6 or 7

MIPS-II

19

8/21/87: Additions to user ISA for R6000 (multichip ECL implementation)

Much performance modeling, analysis of real code

Y 1. Load double / store-double integer (later removed when 64-bit known)

Y 2. Load double / store double floating coprocessor (Yes!)

Y 3. Branch-likely

N 4. Branch-unlikely

Y 5. Convert with explicit rounding mode

N 6. Eliminate delay slot after loads

Y 7. Load-linked – Store Conditional (flexible synchronization)

N 8. Floating-load immediate

Y 9. SQRT

Y 10.Trap instructions for ADA

2

2.11

MIPS-III

20

• 4Q88: Decide R4000 would be 64/32-bit extension of MIPS-II

• 1Q89: more details

• 4/89 C models, start of discussions for “long long”

Later, 1991/1992 this got settled by industry, defacto standard

John Mashey, The Long Road to 64 Bits (2006)

http://queue.acm.org/detail.cfm?id=1165766 OR

http://cacm.acm.org/magazines/2009/1/15667-the-long-road-to-64-bits/fulltext

• C 99 Rationale – long long p.37-41

http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

• 4Q91 – superpipelined, single-issue, on-chip L1 caches, control for L2,

1st 64-bit microprocessor, SMP and FT features

R4000 would have been 3-metal 2-issue superscalar if could have waited,

which could have happened if we’d done an “R3500” with more pins, demuxed

busses, to get to 50/66Mhz about the same time as HP Snakes, ~1990.

Other ~1991 superscalar chips got better floating point, worrisome to SGI

http://queue.acm.org/detail.cfm?id=1165766
http://cacm.acm.org/magazines/2009/1/15667-the-long-road-to-64-bits/fulltext
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

MIPS-IV

21

R8000 (TFP) got started at SGI, multi-chip set, good at linear algebra

2Q92 SGI acquired MIPS

FP MADD, conditional moves, prefetch instructions, 4-issue superscalar

Very good for some kinds of floating point codes, but finicky

R1X000 much more flexible, lower cost, rapidly outperformed R8000

4-issue, speculative, out-of-order superscalar

Later designs, “Beast” & “Alien” never were completed, in favor of → Itanium.

Too bad: synchronization in big multiprocessors, Coherent-no-allocate caching.

4.10

Mistakes: my opinion, not too many bad ones

22

• R2000/R2010 32-bit floating point registers & only 32-bit float ld/st

• 32 singles = 16 doubles, agony for years

• ALWAYS PLAN FOR BIGGER BUSSES

• Hard call to have 64-bitters, given implied need for 64-bit float ld/st

• But might have avoided wish for MIPS-II, a really good thing

• INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS

• Load delay slots (instead of hardware hazard stalls)

• Quickly fixed by R4000, but binaries last for long time

• Bothersome NOPs for embedded footprint, UNIX kernel

• INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS

• Branch delay slots

• OK at the time, some pain later, and some odd bugs in R4000

• Obviated by branch prediction, branch folding

• MIPS = Microprocessor without Interlocked Pipeline Stages

• Maybe, but we had them for MFLO/MFHI & floating point

• Over time, interlocks appeared …. might have been better if started

Load stall, MUL / DIV operations that put results in GP registers, not HI/LO

4.7

3.5

4.8

Not too bad, could have been better

23

• LWL/LWR SWL/SWR – {Load, store} Word {Left, Right}

• Worry over legacy unaligned code, designers said byte networks existed

• LWL/LWR oddly read destination register, merged data, unlike other Loads

• SWL/SWR might need extra bit on bus for 3-byte cases

• I should have fought harder for solution on next page, but no time

• Unexpectedly useful for COBOL & PL/I … but not big markets for us

• Integer multiply/divide .. Good to have hardware, not just steps, but…

• Violated normal rule of language use: 32 op 32 → 32, not 64 bits

• 32x32 => 64-bit product and 32/64 => 32-quotient & 32-remainder

Better (Alpha): Multiply Lower, Multiply Upper, Quotient, Remainder

Interlock on use would have been better

Irregularity & extra visible state caused pain,extra bit for R10000 later

• Lack of synchronization instructions in R2000/R3000

• OK at time, and done on purpose (nobody liked anything)

• Needed standard user libraries for test-and-set, etc, fast-path syscalls.

I thought about this 2Q85, but life got hectic, and then it was too late.

Not mistakes, but really could have done better

24

• More interlocks lessen pipeline visibility – loads, eliminate LO & HI

• LWL/LWR/SWL/SWR use by compiler switches … wrong

For mem*, str* functions, might have fought harder for other ops

• Third-party software vendors want one binary, hard to move

Real problem for general-purpose systems, much less for embedded

• User-level intercept: if we’d had time, something like this for MIPS-I

• Dedicate ~2-3 more integer registers

• Intercept unimplemented opcode, transfer to emulation library

Compile/link code with newest opcodes, but library to make work

• Intercept unaligned references, and by run-time switch

1) Fault, since it usually is (S/360 faulted, S/370 didn’t, we asked!)

2) Fix and return, just slow

3) Record, fix and return, slow, but helps find bad code

• May have been helpful for LISP, Smalltalk, ie.., tags

normal operation fast, rare cases can be handled

• Ideally, just MIPS-I (R2000, R3000, “R3500”) and

MIPS-IV (2-issue superscalar “R4500”) in 64/32 forms

ECL R6000 decision caused cascade of challenges, unfortunately

History – proliferation, but ripple effects from decisions ~1996

25
• I’ve lost track since, but in 2010s, ~800 Million MIPS 32 or 64-bit cores

were shipped / year. (Smaller than ARM, but still Billions out there.)

The irony of ARM’s embedded focus/success by Dave Jaggar

26

• https://en.wikipedia.org/wiki/Dave_Jaggar

“David Jaggar …computer scientist who was responsible for the development of

the ARM architecture between 1992 and 2000, redefining it from a low-cost workstation

processor to the dominant embedded system processor. …

Jaggar was born in 1967 in Christchurch, New Zealand … attended the University of

Canterbury, where he gained a Bachelor of Science degree in Computer Science in

1987 and a Master of Science degree in Computer Science in 1991. His Master's thesis

was titled A Performance Study of the Acorn RISC Machine, in which he exposed

shortcomings of the early ARM designs.

Jaggar is best known for creating the Thumb architecture to re-position ARM as

an embedded processor.”

My NZ lecture on RISC design inspired him, but also convinced him that ARM

couldn’t match MIPS performance, so should aim for lower-power, denser code →

great success in nascent market for personal devices!! Argh!!

He told this story at recent Stanford talk and presented nice gift to me

• Lecture at Stanford – 05/29/19

https://systemx.stanford.edu/events/seminar/20190529/bonus-lecture-arm-

microprocessor-my-part-its-downfall

https://en.wikipedia.org/wiki/Dave_Jaggar
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Christchurch,_New_Zealand
https://en.wikipedia.org/wiki/University_of_Canterbury
https://en.wikipedia.org/wiki/Bachelor_of_Science
https://en.wikipedia.org/wiki/Computer_Science
https://en.wikipedia.org/wiki/Master_of_Science
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://systemx.stanford.edu/events/seminar/20190529/bonus-lecture-arm-microprocessor-my-part-its-downfall

Dave Jaggar’s gift to me for inspiring him

27

• He said he’d also looked for Patterson cognac, could find none

Conclusions

28

• Baggage accumulates, so start small

• Academic computer architecture can/should explore features,

commercial architecture must solve 100% of (sometimes boring) issues

• Seemingly-minor decisions can have decades-long effects

• In 1985, one never would have expected MIPS ISA to be a long survivor

• Look at RISC-V, some elements will be familiar

• Advertisement: visit Computer History Museum, Mountain View, CA

You can see computers, chips, software, etc.

https://computerhistory.org/

https://computerhistory.org/

Extras

29

