MIPS ISAs & Other Features
History, why’s, mistakes & omissions
but one of the longer survivors!

S

BENSSSMSESE S
COMPUTER ORGANIZATION g, s
AND DESIGN LM z

John R. Mashey JohnMashey@yahoo.com, @JohnMashey
February 24, 2017 (updated from 02/24/17, 11/20/97)
UC Santa Barbara — CMPSC 154 — special edition



mailto:JohnMashey@yahoo.com

Speaker —John R. Mashey -

en.wikipedia.org/wiki/John Mashey

PA <

New
Jersey

(.

Silicon
Valley

Pennsylvania State University, 1964-1973, BS Math, MS/PhD CMPSC

Bell Labs 1973-1983, early UNIX, MTS - Supervisor

— Programmer’s Workbench, shell programming, text processing,
workload measurement/tuning in first UNIX computer center, etc

— Created & managed group with software + cognitive psychologists
Convergent Technologies 1983-1984 ($400M), MTS - Director Software

MIPS Computer Systems 1985-1992, ($150M) Mgr. OS = VP Systems Technology
— System coprocessor, TLB, interrupt-handling; byte addressing(');64-bit; Hot Chips 1989-2016
— MIPS Performance Brief editor; a SPEC benchmarking group founder 1988- (science, statistics)

Silicon Graphics 1992-2000 ($3B),Dir. Systems Technology=> VP & Chief Scientist
— MIPS R10000 & later architecture, including performance counters & software
— CccNUMA system architecture (NUMATflex in Origin3000, Altix); supercomputers for NCAR, etc
— Performance issues in HPC, DBMS; technology forecasting, software strategy, Big Data
— Evangelist work with sales/marketing, business development, alliances, scientists ) ® 1995
2001- Typical Silicon Valley “Semi-retired” some consulting for high-tech co’s, VCs

Computer History Museum Trustee;
Technical advisory boards



http://en.wikipedia.org/wiki/John_Mashey

A few references

Stanford

MIPSco

Hennessy, J. L., Jouppi, N., Baskett, F. and Gil, J., (1981) “MIPS: A VLSI Processor Architecture,”
Proc. CMU Conference on VLSI Systems and Computations, pp.337-346, Computer Science Press,
http://i.stanford.edu/pub/cstr/reports/csl/tr/81/223/CSL-TR-81-223.pdf

John Hennessy, Norman Jouppi, Steven Przybylski, Christopher Rowen, Thomas Gross, (Feb 1983)
“Design of a High Performance VLSI Processor”, Technical Report No. 236, Stanford University.
http://i.stanford.edu/pub/cstr/reports/csl/tr/83/236/CSL-TR-83-236.pdf

2-micron, 1-metal nMOS, 4MHz, word-addressing, no halfwords, no “real” MMU

Hennessy, J. L., (1984), VLSI Processor Architecture, IEEE Transactions on Computers, C-33, no
12, pp. 1221-1246. http://ieeexplore.ieee.org/abstract/document/1676395/

J. R. Mashey, RISC, MIPS, and the Motion of Complexity, UniForum February1986 Proceedings,
Anaheim, CA pp. 116-124
https://books.google.com/books/about/UniForum_1986.htmli?id=koY AQAAIAAJ

C.Rowen,L.Crudele,D.Freitas,C.Hansen,E.Hudson, J.Kinsel, J.Moussouris, S.Prybylksi, T. Riordan,
RISC VLSI Design for System-Level Performance, VLSI Systems Design March 1986 pp.81-88.

J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E. Hudson, R. March, S. Prybylski, T. Riordan, C.
Rowen, D. Van't Hof, A CMOS RISC Processor with Integrated System Functions,

COMPCON, page 126-131. IEEE Computer Society, (March 4-6 1986)
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1663029

F. Chow, M. Himelstein, E. Killian, L. Weber, Engineering a RISC Compiler System,

COMPCON, page 132-137. IEEE Computer Society, (March 4-6 1986)

M. DeMoney, J. Moore, J. Mashey, Operating Systems Support on a RISC,
COMPCON, page 138-143. IEEE Computer Society, (March 4-6 1986)

David A. Patterson, John L. Hennessy Computer Organization and Design — _ 2
The Hardware/Software Interface (2013, 4th Edition) or MIPS 5th Edition(2017) | S€ction



http://i.stanford.edu/pub/cstr/reports/csl/tr/81/223/CSL-TR-81-223.pdf
http://i.stanford.edu/pub/cstr/reports/csl/tr/83/236/CSL-TR-83-236.pdf
http://ieeexplore.ieee.org/abstract/document/1676395/
https://books.google.com/books/about/UniForum_1986.html?id=koY_AQAAIAAJ
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1663029

Introduction

 Overview of MIPS Chip History, especially 1984-2000
 Inthe beginning — design issues in a crazy year
 Primary Instruction Set Architectures (ISAs) (~2 too many)

Stanford MIPS (~1982) 4MHz
- 32-bit ISA, 16 registers, word-addressed, no halfwords, MMU (ugh)

MIPS-I: R2000 (1986, 8=>16.7Mhz) R3000 (1988, 25=>40Mhz)
- 32 bit ISA, 32-bit datapaths; SMP, fault-tolerant (FT) possible

MIPS-II: R6000 (1990, 60, 80Mhz, ECL)
- 32-bit ISA, more instructions, with 64-bit datapaths

MIPS-III: R4000 (1992), R4400(1993), R4300i (1995, low-cost, N64)
- 64/32-bit 1SAs, 32 FP regs, 64-bit datapaths; SMP, FT much better

MIPS-IV: R8000 (SGI 1994), R10000 (1996, 4-issue speculative)
- FP MADD, etc; Prefetching; supercomputing; scalability; latency

 Mistakes, maybes, or wishes had there been more time
« ISA design very tough game, many try, few survive even 1 decade



Instruction Set Architectures - History from 1989

« Hot Chips 1 - 1989 https://www.hotchips.org/archives/hc01/
* Intel 486 (X86: CISC with increasingly RISC-like internals)
 Motorola 68040 (Freescale->NXP ColdFire, RISCized controllers)
« Sun SPARC - CMOS, ECL, GaAs—(Oracle quit, Fujitsu still doing)
« MIPS (1986 R2000, 1988 R3000)
+Metorela88K
+ AMD-29000(weord-addressed)
= Intergraph Clipper
RISC vs CISC from comp.arch https://yarchive.net/comp/risc_definition.html

Active in 1989, but not at Hot Chips: HPPA-RISC, early ARM
Later

« POWER / PowerPC; Alpha-{weordaddressed-atfirsty,trteHtanium

+Mainrframe{except ~1964 IBM S/360) & minicomputeriSAs~gohe
« Tensilica (1997), part of Cadence since 2013

. RISC V (2010-)



https://www.hotchips.org/archives/hc01/
https://yarchive.net/comp/risc_definition.html

Brief Review (from my 1989 Hot Chips talk on R3000)

5.2
Direct-mapped

SRAM Caches,

32-bit access
D-cache
Write-through

SYSTEM BLOCK DIAGRAM

BUFFEHS 4

rw%g }ys&vg

>

1o MEMORY : -
SYSTEM SYSTEM MEMORY INTERFACE
< ]I I[ MEMORY BUS H
&1/89 Mash HOT CHIFS 9 THE POWER OF RISC IS IN THE SYSTEM

7)mips



Brief Review (from my 1989 Hot Chips talk on R3000)

R3000 BLOCK DIAGRAM

5.4

Software-Managed

Translation Registers Local Shifter
Lookaside ey MultiplierDivider
Buffer (TLB) ... 64 Entry Address Adder
unusual, many : ne :
thought crazy PC Increment/Mux

Address (16) Data (32+4)

-------------------------------------------------------------------------

81789 Mash HOT CHIPS 10 THE POWER OF RISC IS IN THE SYSTEM %mlps




Brief Review (from my 1989 Hot Chips talk on R3000)

User State Registers

(4] ro=0 fo f1
r f2 13
* 130 a1
ra1 link 16 64-bit Floating Point Registers
32 32-bit Registers
:: fesr
Control & Status r
Mul & Div Result Registers egisie
[’;%w ... NO CONDITION CODES AND A
Program Counter P

81/89 Mash HOT CHIPS 11 THE POWER OF RISC IS IN THE SYSTEM @mips




Brief Review (from my 1989 Hot Chips talk on R3000)

Instruction Formats

ktype: ALU immediate, Memory Op and Branch
op rs r immediate
6 5 5 16

R-type: Register to Register
op s n rd samt func *
6 5 5 5 5 6

J-type: Long jump, word addressed
op target
6 26

SIMPLE, REGULAR FORMATS ALLOW FAST DECODE & PIPELINE

umln Mash HOT CHIPS 12 THE POWER OF RISC IS IN THE SYSTEM @mlps




Brief Review (from my 1989 Hot Chips talk on R3000)

INSTRUCTION SET |

R e e P e e e
LOAD/STORE ALU
Byte addressed, Bi-endian Add, Sub, Logicals
Word, Halfword, Byte Rd:=Rs op Rt, 3 register operations
Signed, Unsigned Rt:=Rs op L, 2 register + 16 bit immediate
Unaligned References Impact of compare & branch on arithmatic ops:
Base + 16 bit Offset Add/Sub with no trap, unsigned arith

Add/Sub with trap, ADA, Pascal, LISP

-BRANCHES

No Condition Codes; Compare and Branch
One Instruction Branch on:

A<, A<0, A>0, A>0, A=B, A=B
When needed, two instructions for: MULTIPLY/DIVIDE

A<B, A<B, A>B, A>B Compile most constants with shft/add/sub
Branches execute next instruction before branching Hardware accelerates remaining
Also Jumps: J, JAL, JR, JALR 12 cycle mult, 35 cycle divide

64 bit product, or quotient/remainder

&1/89 Mash HOT CHIPS 13 THE POWER OF RISC ISIN THE SYSTEM @l‘lﬂps




Brief Review (from my 1989 Hot Chips talk on R3000) |4
cycleli | cycle2 | cycle3 | cycled | cycle5 | cycle6 | cycle7
o1 [02 |01 |02 | 01 | 02 01.]52' o1 |92 [ @1 |02 | 01 | 02
[1Cache [ 1D | _ALU (we] |ad0ms,
. F ADD RF _|DvVA DTLB
Single ISsuel IVA|ITLB e Back-to-Back Operations
5-sta Ipeli
ge plpelne [Toache W8]
Forwarding, but LW Load Delay
No hazard-stall
for Loads, [wa ]
Assembler tried BNE B Cuchs
To fill Ic?ad-delay — G
Slot or insert NOP. | |ova D Cachs
Pipeline granch pelay _m
“1Cache ALY [we ]
TR RF |DVA D Cachs
A |mLB

10



Guidelines

When in doubt, leave it out ... usually

Most additions had to be justified by
Performance ... 1% from simulations
Functionality, like SYSCALL

MIPS ISA designed from C, Fortran, Pascal statistics, with a little thought
about PL/I, COBOL. Nothing special for Lisp, Smalltalk.
Contrast: HP PA RISC had a few instructions to help COBOL, given market.

Fallacy:Write in assembly language to obtain the highest performance. | 2.18
In early MIPS days, | wrote assembly versions of strcpy, strcmp, etc...
because one always did that ... and threw them out. C compiler code as good.

Always constrained by previous choices: path dependency

Try to think ahead to likely future implementations

Minimize implementation artifacts (we didn’t always do that)
Load-delays ... not so good, should have had hazard detect and stall 3.5
Implementation of multiply & divide

32x32-bit FP registers was worst mistake, should have been 32x64-bit

11



In the beginning — Design Issues - R2000 (1986), R3000 (1988)

* Design requirements

Good for multiple UNIX versions, other OS (embedded)
CPU + efficient FPU connection + SRAM cache

Crazed schedule for R2000 (4Q84 — 3Q85):
create new architecture ... systems ... software < 2 years

Manufacturable die in 2 micron (2,000 nm!) CMOS, 144-pin package

« Design implications

Integer unit, big full-associative TLB, on-chip cache control
External FPU, direct access to/from SRAM & DRAM
Minimalist design “only just barely works”

Die space and pins limited

110K transistors in CPU (1986), 70K in R2010 FPU (1987)

12



RISC, MIPS and the Motion of Complexity (1986)

« Movement of complexity among chips, hardware system, compilers & OS

Figure 4 shows the design style that we actu-
ally employ. Everyone owns a part of the
complexity that they find tolerable. A small
part has disappeared (to the left) because
groups have found cases where they could
work together 1o lessen the total complexity.
Zi0 CrrodTore
Oyetaws

(i ([l
?

<

({1 (LI

Coanzdlowa Dpearating
Syelsacs
Figure 4 - Sharing Complexity

Ex1p CACHE ENTL {low)
<3

READ-MODIFY-WRITE

>

!
HE {nign)
—<—

MMUlow), CACHE (high) ]
|

PRECISE EXCERPTIONS

LN LEX o
< ms-l:'is -

MIPELINE
SCHEDULING
I REGISTER SAVING
I
Crunollore Bzaratiag
Ppatons

Figure 5 - Motion of Complexity

4.4. Sequential vs Pipeline Figure 6 illus-
s e 13




MIPS-1 (R2000, R3000) 2

4Q84 Start with Stanford MIPS experience, efiginat-idea—commerciatize-that

« 16 reqisters, some 16-bit instructions
 Word-addressed to save gate delay, no halfword operations (eek!)
«  MMU not from OS people!
« Academic chips can/should explore ideas, commercial needs 100%
12/84 Make competitive, think about IBM 801 papers, commercial realities
« 32 regqisters, 32-bit-only instructions
* Byte-addressed, words, halfwords (Hennessy changed mind!)
1/85 — 2/85: Fine-tune user ISA via compiler analysis & functional needs

3/4/85 Instructions
multiply & divide integer hardware added
load-byte/half unsigned kept
variable shifts kept
ADDIU added
LUI (yes)
ORUI (rejected)
Extends (byte, halfword) rejected, given signed loads, SLL, SRA
Opcode X may or may not be worthwhile, depending on existing ops

14



MIPS-I| 2

3/85: byte order and alignment discussions; Bi-Endian for Daisy (!) | 2

3/85-7/85: interfaces, kernel features; FP specs (COPL1, trapping)
Some CPUs kept “FP registers dirty”, better to trap, lower overhead

4/85: MMU
COPO eliminated special operations, same trapping mechanisms
4/21/85 register conventions tweaked
3Q85: last ISA tweaks
LWL, LWR, SWL, SWR — worry about unaligned Fortran variables
4Q85 Tapeout, first chips, Christmas present
1Q-2Q86 debug OS & system, 15t demoes
4Q86 ship systems to customers
2Q87 R2010 FPU
Insane schedule ... and done with MacProject on my 128K Mac.

15



R2000 (1986), R3000 (1988)

CPU — Compiler interactions

User-level Instruction Set Architecture (ISA)
mostly spec’d by compiler writers + performance analysis
Assumed global optimizing compiler (from Fred Chow’s work @ Stanford)

UNIX kernel wish to be optimized (1Q86, 15t systems)

CPU provided uncached attribute for devices

ANSI C “volatile” attribute just in time!

Horrific bug — needed binary search on optimized UNIX kernel
Cache bugs with device drivers for tape drives

New ISA, new chips, new system, new UNIX port, ~new compilers
Don’t do this unless you absolutely must!

16



R2000 (1986), R3000 (1988)

 CPU - Operating system interactions

* Integrating Virtual Memory, TLBs, Caches (P&H) 5.4
Physical-indexed, physical-tagged caches to ease OS ports, no aliasing
explicit cache management not widely present in 1985

MMU/exceptions/COPO mostly spec’d by OS people (me+2 others)
Software TLB refill for flexibility & paranoia of experienced OS people
from past MMU/exception horrors ... paranoia rewarded!

Months of BSD UNIX, then AT&T UNIX port found new bug, S/W fix

* | think only MIPS & HP did this, many thought nuts, but works fine. (P&H)
| wrote TLB miss handler, then tuned with minimal hardware for speed
CPU had no hardware for finding & accessing Page Tables in memory.

* Omitted: many CPUs had hardware-set reference & dirty bits.
UNIXes sometimes turned those off anyway, as in wanting to trap first
write to a page for Copy-on-Write policies.
We told logic designers we did not want those features (relief).
Possible to do SMP OS, just barely (DeMoney, Moore, Mashey (1986))

- Sometimes careful omission of features = better in every way 17



R2000 (1986), R3000 (1988) 6or7s

« CPU - Hardware interactions for Symmetric MultiProcessing (SMP)
« Cache-control on-chip, not outside logic

« Physical-address, physical tags helped
R2000: SMP possible, very tricky timing, SGI made it work, barely
R3000: much easier, 2 more external signals

« By 1988 feasible to ship cache-coherent SMP, even in workstation-sizes

18



MIPS-I| 2

8/21/87: Additions to user ISA for R6000 (multichip ECL implementation)
Much performance modeling, analysis of real code
¥Y-1-lLoad-deuble-fstore-double-integer (later removed when 64-bit known)

Y 2. Load double / store double floating coprocessor (Yes!)
Y 3. Branch-likely

N 4. Branch-unlikely
Y 5. Convert with explicit rounding mode
N 6. Eliminate delay slot after loads

Y 7. Load-linked — Store Conditional (flexible synchronization) 2.11
N 8. Floating-load immediate
Y 9. SQRT

Y 10.Trap instructions for ADA

19



MIPS-III

40Q88: Decide R4000 would be 64/32-bit extension of MIPS-II
10Q89: more details

4/89 C models, start of discussions for “long long”

Later, 1991/1992 this got settled by industry, defacto standard

John Mashey, The Long Road to 64 Bits (2006)
http://queue.acm.org/detail.cfm?id=1165766 OR
http://cacm.acm.org/magazines/2009/1/15667-the-long-road-to-64-bits/fulltext

C 99 Rationale — long long p.37-41
http://www.open-std.orqg/jtcl/sc22/wgld/www/C99RationaleV5.10.pdf

4Q91 — superpipelined, single-issue, on-chip L1 caches, control for L2,
15t 64-bit microprocessor, SMP and FT features

R4000 would have been 3-metal 2-issue superscalar if could have waited,
which could have happened if we’d done an “R3500” with more pins, demuxed
busses, to get to 50/66Mhz about the same time as HP Snakes, ~1990.

Other ~1991 superscalar chips got better floating point, worrisome to SGI

20


http://queue.acm.org/detail.cfm?id=1165766
http://cacm.acm.org/magazines/2009/1/15667-the-long-road-to-64-bits/fulltext
http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

MIPS-IV 10

R8000 (TFP) got started at SGI, multi-chip set, good at linear algebra
2092 SGI acquired MIPS

FP MADD, conditional moves, prefetch instructions, 4-issue superscalar
Very good for some kinds of floating point codes, but finicky

R1X000 much more flexible, lower cost, rapidly outperformed R8000
4-issue, speculative, out-of-order superscalar

Later designs, “Beast” & “Alien” never were completed, in favor of - Itanium.
Too bad: synchronization in big multiprocessors, Coherent-no-allocate caching.

21



Mistakes: my opinion, not too many bad ones

R2000/R2010 32-bit floating point registers & only 32-bit float Id/st 3.5
« 32 singles = 16 doubles, agony for years
« ALWAYS PLAN FOR BIGGER BUSSES
« Hard call to have 64-bitters, given implied need for 64-bit float |d/st
« But might have avoided wish for MIPS-II, a really good thing
 INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS
Load delay slots (instead of hardware hazard stalls)

* Quickly fixed by R4000, but binaries last for long time st

« Bothersome NOPs for embedded footprint, UNIX kernel

 INSTALLED BASE AND THIRD-PARTY SOFTWARE VENDORS
Branch delay slots 48

* OK at the time, some pain later, and some odd bugs in R4000
« Obviated by branch prediction, branch folding

MIPS = Microprocessor without Interlocked Pipeline Stages
« Maybe, but we had them for MFLO/MFHI & floating point

» Over time, interlocks appeared .... might have been better if started
Load stall, MUL / DIV operations that put results in GP registers, not HzléLO



Not too bad, could have been better

 LWL/LWR SWL/SWR - {Load, store} Word {Left, Right}
Worry over legacy unaligned code, designers said byte networks existed
LWL/LWR oddly read destination register, merged data, unlike other Loads
SWL/SWR might need extra bit on bus for 3-byte cases
| should have fought harder for solution on next page, but no time

» Unexpectedly useful for COBOL & PL/I ... but not big markets for us
» Integer multiply/divide .. Good to have hardware, not just steps, but...

* Violated normal rule of language use: 32 op 32 - 32, not 64 bits

« 32x32 => 64-bit product and 32/64 => 32-quotient & 32-remainder

Better (Alpha): Multiply Lower, Multiply Upper, Quotient, Remainder
Interlock on use would have been better

Irregularity & extra visible state caused pain,extra bit for R10000 later

« Lack of synchronization instructions in R2000/R3000
* OK at time, and done on purpose (nobody liked anything)

* Needed standard user libraries for test-and-set, etc, fast-path syscalls.
| thought about this 2Q85, but life got hectic, and then it was too late.

23



Not mistakes, but really could have done better

» More interlocks lessen pipeline visibility — loads, eliminate LO & HI

 LWL/LWR/SWL/SWR use by compiler switches ... wrong
For mem?*, str* functions, might have fought harder for other ops

« Third-party software vendors want one binary, hard to move
Real problem for general-purpose systems, much less for embedded

« User-level intercept: if we’d had time, something like this for MIPS-I
« Dedicate ~2-3 more integer registers

* Intercept unimplemented opcode, transfer to emulation library
Compile/link code with newest opcodes, but library to make work

 Intercept unaligned references, and by run-time switch
1) Fault, since it usually is (S/360 faulted, S/370 didn’t, we asked!)
2) Fix and return, just slow
3) Record, fix and return, slow, but helps find bad code

« May have been helpful for LISP, Smalltalk, ie.., tags
normal operation fast, rare cases can be handled

* Ideally, just MIPS-I (R2000, R3000, “R3500") and
MIPS-1V (2-issue superscalar “R4500") in 64/32 forms

ECL R6000 decision caused cascade of challenges, unfortunately
24



History — proliferation, but ripple effects from decisions ~1996

19M+ units in 1996, 35M+ units in 1997!!!; 80+ versions
What once was high-end chip (R3000) ... now <$20 versions. ;

 [I've lost track since, but in 2010s, ~800 Million MIPS 32 or 64-bit cores
were shipped / year. (Smaller than ARM, but still Billions out there.)




The irony of ARM’s embedded focus/success by Dave Jaggar

 htips://len.wikipedia.org/wiki/Dave Jaggar

“David Jaggar ...computer scientist who was responsible for the development of

the ARM architecture between 1992 and 2000, redefining it from a low-cost workstation
processor to the dominant embedded system processor. ...

Jaggar was born in 1967 in Christchurch, New Zealand ... attended the University of
Canterbury, where he gained a Bachelor of Science degree in Computer Science in
1987 and a Master of Science degree in Computer Science in 1991. His Master's thesis
was titled A Performance Study of the Acorn RISC Machine, in which he exposed
shortcomings of the early ARM designs.

Jaggar is best known for creating the Thumb architecture to re-position ARM as
an embedded processor.”

My NZ lecture on RISC design inspired him, but also convinced him that ARM
couldn’t match MIPS performance, so should aim for lower-power, denser code =
great success in nascent market for personal devices!! Argh!!

He told this story at recent Stanford talk and presented nice gift to me

* Lecture at Stanford — 05/29/19

https://systemx.stanford.edu/events/seminar/20190529/bonus-lecture-arm-
microprocessor-my-part-its-downfall

26


https://en.wikipedia.org/wiki/Dave_Jaggar
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Christchurch,_New_Zealand
https://en.wikipedia.org/wiki/University_of_Canterbury
https://en.wikipedia.org/wiki/Bachelor_of_Science
https://en.wikipedia.org/wiki/Computer_Science
https://en.wikipedia.org/wiki/Master_of_Science
https://en.wikipedia.org/wiki/ARM_architecture#Thumb
https://systemx.stanford.edu/events/seminar/20190529/bonus-lecture-arm-microprocessor-my-part-its-downfall

Dave Jaggar’s gift to me for inspiring him

He said he’d also looked for Patterson cognac, could find none

B
-
S NN

' Hennessy

EEESLCEST
COMPUTER ORGANIZATION
Henntssy AND DESIGN

27



Conclusions

Baggage accumulates, so start small

Academic computer architecture can/should explore features,
commercial architecture must solve 100% of (sometimes boring) issues

Seemingly-minor decisions can have decades-long effects
In 1985, one never would have expected MIPS ISA to be along survivor
Look at RISC-V, some elements will be familiar

Advertisement: visit Computer History Museum, Mountain View, CA
You can see computers, chips, software, etc.
https://computerhistory.org/

28


https://computerhistory.org/

Extras

29



