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A Word About Registration for CS154

FOR THOSE OF YOU NOT YET REGISTERED:
* This class is FULL

*If you want to add this class AND you are on the
waitlist, see me after lecture
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Lecture Outline

* Tech Details
* Trends
* Historical context
* The manufacturing process of Ics

* Important Performance Measures
* CPU time
* CPI
 Other factors (power, multiprocessors)
* Pitfalls
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Parts of the CPU
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* Cache Memory, which is small & fast RAM memory

for immediate access to data. Resides inside the CPU.

(other types of memory are outside the CPU, like DRAM, etc...)

* The Control Unit (CU)

which sequences how Datapath + Memory interact

Image from wikimedia.org
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The CPU’s Fetch-Execute Cycle

* Fetch the next instruction

e Decode the instruction

* Get data if needed

e Execute the instruction

This is what happens inside a
computer interacting with a
program at the “lowest” level

* Maybe access mem again and/or write back to reg.
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Pipelining (Parallelism) in CPUs

* Pipelining is a fundamental design in CPUs

* Allows multiple instructions to go on at once
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* a.k.a instruction-level parallelism

Basic five-stage pipeline
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MEM = Memory access, WB = Register write back).

(IF = Instruction Fetch, ID = Instruction Decode, EX = Execute,




Digital Design of a CPU (Showing Pipelining)
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Computer Languages and the F-E Cycle

* Instructions get executed in the CPU in machine
language (i.e. all in “1”s and “0”s)

* Even small instructions, like
“add 2 to 3 then multiply by 47,
need multiple cycles of the CPU to get fully executed

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second
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Computer Languages and the F-E Cycle

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

* In low-level languages (like assembly or machine lang.) you need
to spell those parts of the cycles one at a time

* In high-level languages (like C, Python, Java, etc...) you don’t
* 1 HLL statement, like “x = c*(a + b)” is enough to get the job done
* This would translate into multiple statements in LLLs
* What translates HLL to LLL?
* What translates LLL to ML?
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Machine vs. Assembly Language

* Machine language (ML) is the actual 1s and Os

Example:

1011110111011100000101010101000

* Assembly language

* Instructions are given mnemonic codes but still displayed

one step at a time

is one step above ML

* Advantage? Better human readability

Example:
Iw  $te, 4($sp)
add $to, $to, $te

1/9/20

High-level
language
program
(inC)

Assembly
language
program
(for MIPS)

# fetch N from someplace in memory

# add N to itself
# and store the result in N

Matni, CS154, Wi20

Binary machine
language
program

(for MIPS)

swap(int v[], int k)

{int temp;
temp = v[k];
vik] = v[k+17;
v[lk+1] = temp;

}

swap:

muli $2, $5,4
add $2, $4,%2
Tw  $15, 0($2)
Tw  $16, 4($2)
sw  $16, 0($2)
sw  $15, 4($2)
jr $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000
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Computer Memory

Usually organized in two parts:

e Address: Where can | find my data?
e Data (payload): What is my data?

Stack

!

Free Memory

1

Heap

Initialized Data

Recall: Uninitialized Data
- (BSS)

e A bit (b) is

* A byte (B) is Text

* MIPS CPUs operate instructions that are bits long

 MIPS CPUs organize memory in units called that are ___ bits long

* MIPS memory is addressable in endian

1/9/20 Matni, CS154, Wi20
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Reminder of some MIPS instructions

* add vs addi vs addu vs addui
* multand mflo

¢ sll

* srlvssra

e 1avs1livs lwvs sw
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Eight Great Ideas in Computer Architecture

* Design for Moore’s Law

* Use abstraction to simplify design
* Make the common case fast

* Performance via parallelism

* Performance via pipelining

* Performance via prediction

* Hierarchy of memories

* Dependability via redundancy
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Electronic Circuitry Tech Trends

* Electronics technology continues to evolve
* Increased memory capacity (at same price/size)
* Increased CPU performance
* Reduced costs overall

Year | Technology Relative
Performance

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2.4 million

2013 Application Specific IC or ASIC (ultra-large scale) 250 million
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DRAM capacity goes up and the prices come down...

* DRAM = Dynamic RAM
* Very common tech used for

computer memory
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Source: K.Asanovic, UCB
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Performance vs. VAX-11/780
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Computer Architecture:
A Little History

Throughout the course we’ll use a historical narrative to help
understand why certain ideas arose

Why worry about old ideas?

* Helps to illustrate the design process, and explains why certain
decisions were taken

* Because future technologies might be as constrained as older ones

* Those who ignore history are doomed to repeat it

* Every mistake made in mainframe design was also made in minicomputers,
then microcomputers, where next?
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Digital Computers
* An improvement over Analog Computers...

* Represent problem variables as numbers encoded
using discrete steps
* Discrete steps provide noise immunity

 Enables accurate and deterministic calculations
e Same inputs give same outputs exactly

1/9/20 Matni, CS154, Wi20
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Computing Devices for General Purposes

e Charles Babbage (UK)

* Analytical Engine could calculate polynomial
functions and differentials

* Inspired by older generation of calculating
machines made by Blaise Pascal (1623-1662, France)

e Calculated results, but also
stored intermediate findings

(i.e. precursor to computer memory) C"Babbage (1791 - 1871)

e “Father of Computer Engineering”

* Ada Byron Lovelace (UK) Part of Babbage’s
« Worked with Babbage and foresaw Analytical Engine
computers doing much more than

calculating numbers
* Loops and Conditional Branching

Images from Wikimedia.org

. /”/I\/Iother of Computer Programming”
1/9/20
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The Modern Digital Computer

* Calculating machines kept being produced in the early 20t
century (IBM was established in the US in 1911)

* Instructions were very simple, which made hardware
implementation easier, but this hindered the creation of
complex programs.

Alan Turing (UK)

* Theorized the possibility of computing machines
capable of performing any conceivable mathematical
computation as long as this was representable as an
algorithm

» Called “Turing Machines” (1936) — ideas live on today...

* Lead the effort to create a machine to successfully decipher the
German “Enigma Code” during World War |l
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Zuse 73 (1941)

* Built by Konrad Zuse in wartime Germany using 2000 relays
* Could do floating-point arithmetic with hardware
 22-bit word length ; clock frequency of about 4-5 Hz!!

* 64 words of memory!!! i

* Two-stage pipeline |
1) fetch & execute, 2) writebac

* No conditional branch

* Programmed via paper tape

Replica of the Zuse Z3 in the

Deutsches Museum, Munich
1/9/20
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ENIAC (1946)

* First electronic general-purpose computer

* Constructed during WWII to calculate firing tables for US Army
* Trajectories (for bombs) computed in 30 seconds instead of 40 hours
* Was very fast for its time — started to replace human “computers”

e Used vacuum tubes (transistors hadn’t been invented yet)
* Weighed 30 tons, occupied 1800 sq ft

* [t used 160 kW of power (about 3000 light bulbs worth)

* It cost $6.3 million in today’s money to build.

* Programmed by plugboard and switches, time consuming!

* As a result of large number of tubes, it was often broken
(5 days was longest time between failures!)

1/9/20 Matni, CS154, Wi20
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Comparing today’s cell phones
(with dual CPUs), with ENIAC,
we see they

cost 17,000X less
are 40,000,000X smaller

use 400,000X less power

are 120,000X lighter B, | BN Quaconn
are 1. i el o

Bx 05 1 10325Y

are 1,300X more powerful. gt ;;\;9§=,f°ELPB 0
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FDVAC (1951)

* ENIAC team started discussing stored-program concept to
speed up programming and simplify machine design

* Based on ideas by John von Nuemann & Herman Goldstine

e Still the basis for our general CPU architecture today

1/9/20 Matni, CS154, Wi20
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Commercial computers:
BINAC (1949) and UNIVAC (1951) at EMC

* Eckert and Mauchly left academia and formed the Eckert-
Mauchly Computer Corporation (EMC)

* World’s first commercial computer was BINAC which didn’t
work...

* Second commercial computer was UNIVAC
* Famously used to predict presidential election in 1952
* Eventually 46 units sold at >S1M each
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IBM 650 (1953)

* The first mass-produced
computer

* Low-end system aimed at
businesses rather than
scientific enterprises

e Almost 2,000 produced

[Cushing Memorial Library and Archives, Texas A&M,
Creative Commons Attribution 2.0 Generic |
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Improvements in C.A.

* IBM 650’s instruction set architecture (ISA)

e 44 instructions in base instruction set, expandable to 97 instructions

* Hiding instruction set completely from programmer using
the concept of high-level languages like Fortran (1956),
ALGOL (1958) and COBOL (1959)

* Allowed the use of stack architecture, nested loops, recursive calls,
interrupt handling, etc...

Adm. Grace Hopper (1906 — 1992),
inventor of several High-level language concepts
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Manufacturing ICs

Blank
Silicon ingot wafers
. 20 to 40
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Yield: the proportion of working dies per wafer;

often expressed as a number between O and 1
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Example: Intel Core i7 Wafer

* 300mm (diameter) wafer
* 280 chips
* Each chipis 20.7 mm x 10.5 mm

* 32nm CMOS technology
(the size of the smallest piece of logic
and the type of Silicon semiconductor used)
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Costs of Manufacturing ICs

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1
(1+ (Defects per areaxDie area/2))?

Yield =

» \Wafer cost and area are fixed
* Defect rate determined by manufacturing process
* Die area determined by architecture and circuit design

1/9/20 Matni, CS154, Wi20
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YOUR TO-DOs for the Week

* Do your reading for next class (see syllabus)

* Work on Assignment #1 for lab (lab01)
 Meet up in the lab this Friday
* Do the lab assignment
* You have to submit it as a PDF using Gradescope
e Due on Wednesday, 1/15, by 11:59:59 PM

1/9/20 Matni, CS154, Wi20
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