Computer Abstractions and Technology,

CS 154: Computer Architecture
Lecture #2
5 Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

A Word About Registration for CS154

FOR THOSE OF YOU NOT YET REGISTERED:
* This class is FULL

*If you want to add this class AND you are on the
waitlist, see me after lecture

1/9/20 Matni, CS154, Wi20

Lecture Outline

* Tech Details
* Trends
* Historical context
* The manufacturing process of Ics

* Important Performance Measures
* CPU time
* CPI
 Other factors (power, multiprocessors)
* Pitfalls

1/9/20 Matni, CS154, Wi20

Parts of the CPU

(ey 1_

Control
Unit

Instructions

-
-
-
-

* The Datapath, which includes the e
Arithmetic Logic Unit (ALU) and e]

other items that perform operations on data Combinatonal

Logic » Output |—»

YYVYY

Yvyy { \ J

Input

\. J

Main
Memory

\

* Cache Memory, which is small & fast RAM memory

for immediate access to data. Resides inside the CPU.

(other types of memory are outside the CPU, like DRAM, etc...)

* The Control Unit (CU)

which sequences how Datapath + Memory interact

Image from wikimedia.org
1/9/20 Matni, CS154, Wi20 4

Inside the Apple A5 1
Processor Prégidsor

Data Path
2

Processor
Data Path

Manufactured in 2011 — 2013 [:

32 nm technology
37.8 mm? die size

ISRt iRttt iiE]
HIIHIIII‘IIIII!HII
AP TN

DDR SDRM

...Arm Core.

GPIO

Processor
Data Path
2

Processor
Data Path
1

Digital
Logic
Blocks

Arm Core:=: = = =

...
llllllHH mmun :mhu 'Ml‘ﬁbe" i n:hun lHIllllll :hmn L
.

The CPU’s Fetch-Execute Cycle

* Fetch the next instruction

e Decode the instruction

* Get data if needed

e Execute the instruction

This is what happens inside a
computer interacting with a
program at the “lowest” level

* Maybe access mem again and/or write back to reg.

1/9/20 Matni, CS154, Wi20 6

Pipelining (Parallelism) in CPUs

* Pipelining is a fundamental design in CPUs

* Allows multiple instructions to go on at once

1/9/20

* a.k.a instruction-level parallelism

Basic five-stage pipeline

5 6 7
WB
MEM | WB
EX |MEM | WB
ID EX | MEM
IF ID EX

. Clock

Inst;'\.\“g{c'e L £ 8

No.
1 IF ID EX
2 IF ID
3 IF
4
5

MEM = Memory access, WB = Register write back).

(IF = Instruction Fetch, ID = Instruction Decode, EX = Execute,

Digital Design of a CPU (Showing Pipelining)

am / W3W

Write Back

WB

XN

. Instruction Decode Execute
Instruction Fetch Register Fetch Address Calc. Memory Access
IF D EX MEM
Next PC
B Next SEQ PC Next SEQ PC
Q.
> RS1
—]
RS2 Branch
File
—
— — m
:' E N f 2 -
o o= =
PC o - =
_./
Sign |/mm N
A t Extend =z
—
>
l L~ |—‘
N W]

WB Data

Computer Languages and the F-E Cycle

* Instructions get executed in the CPU in machine
language (i.e. all in “1”s and “0”s)

* Even small instructions, like
“add 2 to 3 then multiply by 47,
need multiple cycles of the CPU to get fully executed

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

1/9/20 Matni, CS154, Wi20 9

Computer Languages and the F-E Cycle

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

* In low-level languages (like assembly or machine lang.) you need
to spell those parts of the cycles one at a time

* In high-level languages (like C, Python, Java, etc...) you don’t
* 1 HLL statement, like “x = c*(a + b)” is enough to get the job done
* This would translate into multiple statements in LLLs
* What translates HLL to LLL?
* What translates LLL to ML?

1/9/20 Matni, CS154, Wi20 10

Machine vs. Assembly Language

* Machine language (ML) is the actual 1s and Os

Example:

1011110111011100000101010101000

* Assembly language

* Instructions are given mnemonic codes but still displayed

one step at a time

is one step above ML

* Advantage? Better human readability

Example:
Iw $te, 4($sp)
add $to, $to, $te

1/9/20

High-level
language
program
(inC)

Assembly
language
program
(for MIPS)

fetch N from someplace in memory

add N to itself
and store the result in N

Matni, CS154, Wi20

Binary machine
language
program

(for MIPS)

swap(int v[], int k)

{int temp;
temp = v[k];
vik] = v[k+17;
v[lk+1] = temp;

}

swap:

muli $2, $5,4
add $2, $4,%2
Tw $15, 0($2)
Tw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

11

Computer Memory

Usually organized in two parts:

e Address: Where can | find my data?
e Data (payload): What is my data?

Stack

!

Free Memory

1

Heap

Initialized Data

Recall: Uninitialized Data
- (BSS)

e A bit (b) is

* A byte (B) is Text

* MIPS CPUs operate instructions that are bits long

 MIPS CPUs organize memory in units called that are ___ bits long

* MIPS memory is addressable in endian

1/9/20 Matni, CS154, Wi20

12

Reminder of some MIPS instructions

* add vs addi vs addu vs addui
* multand mflo

¢ sll

* srlvssra

e 1avs1livs lwvs sw

1/9/20 Matni, CS154, Wi20 13

1/9/20

Matni, CS154, Wi20

14

Eight Great Ideas in Computer Architecture

* Design for Moore’s Law

* Use abstraction to simplify design
* Make the common case fast

* Performance via parallelism

* Performance via pipelining

* Performance via prediction

* Hierarchy of memories

* Dependability via redundancy

1/9/20 Matni, CS154, Wi20

Electronic Circuitry Tech Trends

* Electronics technology continues to evolve
* Increased memory capacity (at same price/size)
* Increased CPU performance
* Reduced costs overall

Year | Technology Relative
Performance

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (IC) 900

1995 Very large scale IC (VLSI) 2.4 million

2013 Application Specific IC or ASIC (ultra-large scale) 250 million

1/9/20 Matni, CS154, Wi20 16

DRAM capacity goes up and the prices come down...

* DRAM = Dynamic RAM
* Very common tech used for

computer memory

7.25

1,000,000 A

>
=
[}
©
Q
©
o
=
Q
X

Decreasing memory chip prices i dia
== DRAM (DDR4 8Gb)

100 -

10

=== NAND Flash (128Gb MLC)

4.52

3.98

10,000,000 -

100,000 A

10,000 -

1000 -

16K

64K

256K

4M

DRAM capacity 4G
2G
1G

256M 512M

T28M
16M BaM

3.93
3.75

v Dec. 2018 Jan. 2019

1/9/20

April

May

Source: DRAMeXchange
Matni, CS154, Wi20

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Year of introduction

17

Source: K.Asanovic, UCB

o
o
O»
~—
&
|
o
Q.
©
=
o]
&)
)
w
—
o
o
7))
8
“—
L
=
L
(0
&)

Moore’s Law
The Fifth Paradigm

Techno
Genera

Electromechanical

1900 1910 1920

logy
tions

Relay
1930 1940

Vacuum Tube Transistor Integrated Circuit

1950
Year

1960 1970 1980

1990 2000

18

Performance vs. VAX-11/780

100,000

10,000

1,000

100

10

Single-Thread Processor Performance

40 years of Processor Performance

e e .. Digital AlpF;aSe_rv.er 8400.6/575 21264,.575 MHz .,

22%/year;

VAX- 11/780 5 MHz

Intel:Xeon 4

Intel Xegn 4 coresco3r.eGSG?-|7

Intel Xeon 4 cares, 3.6 GHz (boosts to 4.0 GHz)

. Intel Core i7 4 cores, 3.4 GHz (boosts to 3.8 GHz)

\Intel Xeon 6 cores, 3.3 GHz (boosts to 3.6 GHz)

Intel*Xeon 4 cores, 3.3 GHz (boosts to 3.6 GHz)

Intel Core i7 Extreme 4 cores, 3.2 GHz (boosts$ to 3.5 GHz)

Intel Cofe Duo Extreme 2 cores, 3.0 GHz
Intel Core 2 Extreme 2 cores, 2.9 GHz

AMD Athlon 64, 2.8 GHz- *

AMD Athlon, 2.6
Intel Xeoh EE 3.2 GHz

Intel D850EMVR motherboard Pentium 4 processor GW|th hyper-threading), 3:06 GHz
IBM Power4, 1.3 GHz

Intel VC820 motherboard Pentium Il processor, 1.0 GHz
Professional Workstation XP1000 21264A, 667 MHz

AIphaServer 4000 5/600 21164, 600 MHz
Digital Alphastatlon 5/500, 500 MHz

Digital Alphastation 5/300, 300 MHz
Digital Aphastatio'n 4/266, 266 MHz

IBM POWERSstation 100, 150 MHz

! Digital 3000 aXP/500, 150 MHz

HP 9000/750, 66 MHz

52%/year§

IBM RS6000/540, 30 MHz @
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Trcoo Sun-4/260; T67TMHZ @ " T T " - DTt Tttt SR ot

VAX 8700, 22 MHz

VAX-11/785

z (boos

t
oosts to 450 GHz2)

Intel i7-7I700k, 4.2 GHz (boosts tol4.5 GHz)
Intel Core i7-6700k 4 cores, 4.0 GHz (boosts to 4.2 GHz) \
Intel Core i7-6700k 4 cores, 4 O GHz (boosts to 4.2 GHz)

to 4.1 GHz)

[Hennessy & Patterson, 2017] I

I I I I I
1980 1985 1990 1995 2000 2005

year

I
2010

2015

Computer Architecture:
A Little History

Throughout the course we’ll use a historical narrative to help
understand why certain ideas arose

Why worry about old ideas?

* Helps to illustrate the design process, and explains why certain
decisions were taken

* Because future technologies might be as constrained as older ones

* Those who ignore history are doomed to repeat it

* Every mistake made in mainframe design was also made in minicomputers,
then microcomputers, where next?

1/9/20 Matni, CS154, Wi20 20

Digital Computers
* An improvement over Analog Computers...

* Represent problem variables as numbers encoded
using discrete steps
* Discrete steps provide noise immunity

 Enables accurate and deterministic calculations
e Same inputs give same outputs exactly

1/9/20 Matni, CS154, Wi20

21

Computing Devices for General Purposes

e Charles Babbage (UK)

* Analytical Engine could calculate polynomial
functions and differentials

* Inspired by older generation of calculating
machines made by Blaise Pascal (1623-1662, France)

e Calculated results, but also
stored intermediate findings

(i.e. precursor to computer memory) C"Babbage (1791 - 1871)

e “Father of Computer Engineering”

* Ada Byron Lovelace (UK) Part of Babbage’s
« Worked with Babbage and foresaw Analytical Engine
computers doing much more than

calculating numbers
* Loops and Conditional Branching

Images from Wikimedia.org

. /”/I\/Iother of Computer Programming”
1/9/20

‘I' \

! 22
A. Byron Lovelace (1815 - 1852)

The Modern Digital Computer

* Calculating machines kept being produced in the early 20t
century (IBM was established in the US in 1911)

* Instructions were very simple, which made hardware
implementation easier, but this hindered the creation of
complex programs.

Alan Turing (UK)

* Theorized the possibility of computing machines
capable of performing any conceivable mathematical
computation as long as this was representable as an
algorithm

» Called “Turing Machines” (1936) — ideas live on today...

* Lead the effort to create a machine to successfully decipher the
German “Enigma Code” during World War |l

1/9/20 Matni, CS154, Wi20 23

Zuse 73 (1941)

* Built by Konrad Zuse in wartime Germany using 2000 relays
* Could do floating-point arithmetic with hardware
 22-bit word length ; clock frequency of about 4-5 Hz!!

* 64 words of memory!!! i

* Two-stage pipeline |
1) fetch & execute, 2) writebac

* No conditional branch

* Programmed via paper tape

Replica of the Zuse Z3 in the

Deutsches Museum, Munich
1/9/20

[Venusianer, Creative Commons BY-SA 3.0 |

ENIAC (1946)

* First electronic general-purpose computer

* Constructed during WWII to calculate firing tables for US Army
* Trajectories (for bombs) computed in 30 seconds instead of 40 hours
* Was very fast for its time — started to replace human “computers”

e Used vacuum tubes (transistors hadn’t been invented yet)
* Weighed 30 tons, occupied 1800 sq ft

* [t used 160 kW of power (about 3000 light bulbs worth)

* It cost $6.3 million in today’s money to build.

* Programmed by plugboard and switches, time consuming!

* As a result of large number of tubes, it was often broken
(5 days was longest time between failures!)

1/9/20 Matni, CS154, Wi20

25

5\ .
\

-

(N
SAANAAAN

.

AW e Aanae

,',',, P R

E
|

[Public Domain, US Army Photo]

1/9/20 Matni, CS154, Wi20 26

Comparing today’s cell phones
(with dual CPUs), with ENIAC,
we see they

cost 17,000X less
are 40,000,000X smaller

use 400,000X less power

are 120,000X lighter B, | BN Quaconn
are 1. i el o

Bx 05 1 10325Y

are 1,300X more powerful. gt ;;\;9§=,f°ELPB 0

1/9/20 Matni, CS154, Wi20 27

FDVAC (1951)

* ENIAC team started discussing stored-program concept to
speed up programming and simplify machine design

* Based on ideas by John von Nuemann & Herman Goldstine

e Still the basis for our general CPU architecture today

1/9/20 Matni, CS154, Wi20

28

Commercial computers:
BINAC (1949) and UNIVAC (1951) at EMC

* Eckert and Mauchly left academia and formed the Eckert-
Mauchly Computer Corporation (EMC)

* World’s first commercial computer was BINAC which didn’t
work...

* Second commercial computer was UNIVAC
* Famously used to predict presidential election in 1952
* Eventually 46 units sold at >S1M each

1/9/20 Matni, CS154, Wi20 29

IBM 650 (1953)

* The first mass-produced
computer

* Low-end system aimed at
businesses rather than
scientific enterprises

e Almost 2,000 produced

[Cushing Memorial Library and Archives, Texas A&M,
Creative Commons Attribution 2.0 Generic |

1/9/20 Matni, CS154, Wi20 30

Improvements in C.A.

* IBM 650’s instruction set architecture (ISA)

e 44 instructions in base instruction set, expandable to 97 instructions

* Hiding instruction set completely from programmer using
the concept of high-level languages like Fortran (1956),
ALGOL (1958) and COBOL (1959)

* Allowed the use of stack architecture, nested loops, recursive calls,
interrupt handling, etc...

Adm. Grace Hopper (1906 — 1992),
inventor of several High-level language concepts

o A\
¢ 3 ¥ .
& \ L)
- N
& — Wi
@

1/9/20 Matni, C5154, Wi20 [Public Domain, wikimedia]

31

Manufacturing ICs

Blank
Silicon ingot wafers
. 20 to 40
(3 e @ processing steps
Tested dies Tested Patterned wafers
mlin wafer TN
| Bond die t ﬂllj‘lgﬂmﬂlgﬁ — Waf (A
ond die to . afer \ / \
package minl-dnin Dicer {H tester pamnNEE)
e af { /
l Ml \ =

Packaged dies Tested packaged dies

@@@_» Part HHD .| Shipto
[o] tester [o [} customers

Yield: the proportion of working dies per wafer;

often expressed as a number between O and 1

1/9/20 Matni, CS154, Wi20

Example: Intel Core i7 Wafer

* 300mm (diameter) wafer
* 280 chips
* Each chipis 20.7 mm x 10.5 mm

* 32nm CMOS technology
(the size of the smallest piece of logic
and the type of Silicon semiconductor used)

1/9/20 Matni, CS154, Wi20 33

Costs of Manufacturing ICs

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1
(1+ (Defects per areaxDie area/2))?

Yield =

» \Wafer cost and area are fixed
* Defect rate determined by manufacturing process
* Die area determined by architecture and circuit design

1/9/20 Matni, CS154, Wi20

34

YOUR TO-DOs for the Week

* Do your reading for next class (see syllabus)

* Work on Assignment #1 for lab (lab01)
 Meet up in the lab this Friday
* Do the lab assignment
* You have to submit it as a PDF using Gradescope
e Due on Wednesday, 1/15, by 11:59:59 PM

1/9/20 Matni, CS154, Wi20

35

1/9/20

</LECTURE>

Matni, CS154, Wi20

36

