CPU Instructions

CS 154: Computer Architecture
Lecture #4
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

*Lab 01 — due today!

*Lab 02 — description will be out soon!

1/15/20 Matni, CS154 , Wi20

Lecture Outline

* Instruction Set Architectures (ISA)

I

* MIPS instruction formats

~ *Refresher on some other MIPS instructions

Reference material from CS64 — I’ll be going over this a little fast...

1/15/20 Matni, CS154, Wi20

Other Factors to CPU Performance:
Power Consumption

Market trends DEMAND that power consumption of CPUs keep
decreasing.

BUT Power and Performance DON’T always go together...

* Power = Capacitive Load x Voltage? x Clock Frequency

* So:

* Decreasing Voltage helps to get lower power, but it can make individual
logic go slower!

* Increasing clock frequency helps performance, but increases power!

* [t’s a dilemma that has contributed to Moore’s Law “plateau”

1/15/20 Matni, CS154, Wi20

Other Factors to CPU Performance:
Multiple Processors

* Multicore microprocessors
* More than one processor per chip

* Requires explicitly parallel programming

* Compare with instruction level parallelism
* Hardware executes multiple instructions at once
* Hidden from the programmer

e Hard to do

* Programming for performance
* Load balancing
* Optimizing communication and synchronization

1/15/20 Matni, CS154, Wi20

Pitfalls: Amdahl’s Law

* Improving an aspect of a computer and expecting a proportional
improvement in overall performance

T- _ Taffected +
mPed - improvement factor

unaffected

* Your benchmark time is 100, 80 of which comes from a part of the CPU that
you want to improve by a factor of n, so:

Timproved =(80/n) +20

* If you wanted to improve your overall T by a factor of 2
(i.e. drop total from 100 to 50), then you’d need to make n = 2.7

because 50=(80/2.7)+20 ..ok..

* Keep that up! Let’s go for a factor of n =5, so drop total from 100 to 20:
i.e. 207?=(80/5)+20 ...uh... can’t do that... &

1/15/20 Matni, CS154, Wi20

Pitfalls: Idle Power

* Simply put:
CPUs will still draw disproportionate power when idling.

* Example, even when operating at 10% load,
the i7 will draw 47% of the power

* Becomes a problem when dealing with large scale implementations,
like data centers (Google, Facebook, Amazon, etc...)

* Design challenge: design processors to draw power more
proportional to load (requires Physics-level approach, tho...)

1/15/20 Matni, CS154, Wi20 7

Pitfall: MIPS as a Performance Metric

* Note: We're NOT talking about MIPS the processor type!!!!

* MIPS (millions of instructions per second) is a popular
performance metric, HOWEVER...

* Doesn’t account for

 Differences in ISAs between computers
(some ISAs may be more efficient than others)

* Differences in complexity between instructions (weighted CPls)

1/15/20 Matni, CS154, Wi20 8

1/15/20 Matni, CS154, Wi20

Instruction Set Architecture (ISA)

* The “contract” between software and hardware
(hence, it’s an abstract model of a computer!)

e Typically described with:

e programmer-visible states (i.e. registers + memory)
* the semantics/syntax of the instructions

* Examples abound in your MIPS Reference Card!

1/15/20 Matni, CS154, Wi20 10

Instruction Set Architecture (ISA)

Many implementations possible for a given ISA
* Most microprocessor families have their own ISA

e Some can be shared across families (b/c they’re popular)
 Example: AMD and Intel processors both run the x86-64 ISA (orig. Intel).

e Some of the same ISAs can be customized

* Many cellphones use the ARM ISA with specific implementations from
many different companies including
Apple, Qualcomm, Samsung, Huawei, etc.

* We'll be using the MIPS ISA in this class.

1/15/20 Matni, CS154, Wi20 11

Intel, AMD (x86)

ARM, MIPS
Classification of ISAs GPUs (AMD, Nvidia)
Intel/HP (IA-86)
.] CISC vs RISC:
By architectural complexity* + Higher instruction
* CISC (complex instruction set computer) and ijp’ex’t” (GACRY
. . ore transistors
RISC (reduced instruction set computer) . Higher power

* Most popular distinction in commercial CPUs Commercial computers

vs. embedded computers

* By instruction-level parallelism
EPIC/VLIW:

* VLIW (very long instruction word) and . less commercial than

EPIC (explicitly parallel instruction computing) CISC/RISC

* Server/supercomputer
use mostly

* By extreme simplification of instructions
MISC/OISC:

* MISC (minimal instruction set computer) and [, e
OISC (one instruction set computer) e Mostly in research

1/15/20 Matni, CS154, Wi20 12

The MIPS ISA

* Developed at Stanford then commercialized by MIPS
Technologies, created/led by John Hennessey
 Stanford CS prof, President (2000-16), author of our textbook...

 Started multiple important SV companies,
current Chair of Alphabet, Inc.

* Hennessey and Patterson won the 2017 Turing Award for
their work in developing RISC architecture

* MIPS still has a large share of embedded core market

e Consumer electronics, storage peripherals, cameras, printers, ...

1/15/20 Matni, CS154, Wi20 13

Code on MIPS

Original MIPS
. 1i $to, 5
= 7; 1i $t1, 7
=X + VY, add $t3, $t@, $t1

1/15/20 Matni, CS154, Wi20

Available Registers in MIPS

32 registers in all

NAME NUMBER USE
* Refer to your
MIPS Reference Card $zero 0 The Constant Value 0
$at 1 Assembler Temporary

$v0-$Sv1 2.3 Values for F}mctlon Res.ults
and Expression Evaluation

$a0-$a3 4-7 Arguments

$t0-$t7 8-15 Temporaries

$s0-$s7 16-23 Saved Temporaries
$t8-$t9 24-25 Temporaries

$k0-$k1 26-27 Reserved for OS Kernel

* Bring it to class
from now on...

* Copy on main
webpage

Used for data

$gp 28 Global Pointer
$sp 29 Stack Pointer
$fp 30 Frame Pointer

$ra 31 Return Address

1/15/20 Matni, CS154, Wi20 15

MIPS Instruction Formats

* Each instruction is represented with 32 bits

* There are three different instruction formats: R, |,)
* These allow for instructions to take on different roles
* R-Format is used when it’s all about registers
* |-Format is used when you involve (immediate) numbers

* J-Format is used when you do code “jumping”
(i.e. branching)

1/15/20 Matni, CS154, Wi20 16

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Remember: Memory is addressed in Bytes.

Instruction Register

Registers

Instruction Register Registers

St =St S Bl e

Instruction Register Registers

Instruction Register Registers

Instruction Register Registers

Instruction Register

Registers

Instruction Register Registers

Instruction Register

Registers

Instruction Register Registers

dddn st 3 el o SE]

add St eSS Bl

Instruction Register Registers

adel St 3s 5150y

Talking to the OS

* We are going to be running on MIPS emulator called SPIM

* Optionally, through a program called QtSPIM (GUI based)
 Whatis an emulator?

* MIPS features a syscall instruction, which triggers a software
interrupt, or exception

e Outside of an emulator (i.e. in the real world), these instructions
pause the program and tell the OS to go do something with 1/0

* Inside the emulator, it tells the emulator to go emulate something
with I/O

1/15/20 Matni, CS154, Wi20 28

syscall (for spim use)

* The OS/emulator has access to the CPU registers

* So we have the OS/emulator’s attention, but how
does it know what we want?

* We put special values (codes) in the registers to

indicate what we want

* These are codes that can’t be used for anything else, so
they’re understood to be just for syscall

* SO... is there a “code book”??7??

1/15/20

Matni, CS154, Wi20

Yes! All CPUs come with manuals.
For us, we have the MIPS Ref. Card

29

M | PS System Se rViceS System call code: placed in SvO

Argument: placed in $Sa0
Service System Call Code Arguments Result
print_int 1 $a0 = integer
print_float 2 $£12 = float
print_double 3 $£12 = double
print_string 4 $a0 = string stdout
read_int 5 integer (in $v0)
read_float 6 float (in $£0)
read_double 7 double (in $£0)
read_string 8 $a0 = buffer, sa1 = length stdin
sbrk 9 $a0 = amount address (in $v0)
m— | cxit 10

print_character 11 $a0 = character
read_character 12 character (in $v0)
open 13 $a0 = filename, file descriptor (in $vo0)

$al = flags, $a2 = mode
read 14 $a0 = file descriptor, bytes read (in $v0)

$al = buffer, $a2 = count
write 15 $a0 = file descriptor, bytes written (in $vo0)

$al = buffer, $a2 = count
close 16 $a0 = file descriptor 0 (in $v0) File | / 0

H/15/20 exit2 17 $a0 = value *

Bring out your MIPS Reference Cards!

1/15/20 Matni, CS154, Wi20

31

CORE INSTRUCTION SET
FOR-

NAME, MNEMONIC

Add

Add Immediate
Add Imm. Unsigned
Add Unsigned

And

And Immediate

Branch On Equal

add
addi
addiu
addu
and
andi

beg

Branch On Not Equalbne

Jump

Jump And Link

Jump Register

Load Byte Unsigned

Load Halfword
Unsigned

Load Linked

Load Upper Imm.

Load Word

Nor

Or

Or Immediate

Set Less Than

Set Less Than Imm.

Set Less Than Imm.
Unsigned

Set Less Than Unsig.

Shift Left Logical

Shift Right Logical

Store Byte
Store Conditional

Store Halfword

Store Word
Subtract
Subtract Unsigned

3
jal
jr

1bu

lhu

11
lul
1w
nor
or
ori
slt

sled
sltiu

sltu
sll

srl

sb

SwW
sub

subu

MAT

R

I
I
R
R
I

— D e T T e e

—

~ R =

OPERATION (in Verilog)
R{rd] = R[rs] + R[rt]
R[rt] = R[rs] + SignExtImm
R[rt] = R[rs] + SignExtImm
R{rd] = R[rs] + R[rt]
R[rd] = R[rs] & R[rt]
R[rt] = R[rs] & ZeroExtImm

if{R[rs]==R][rt])
PC=PC+4+BranchAddr

if(R[rs]!=R]r1])
PC=PC+4+BranchAddr

PC=JumpAddr
R[31]J=PC+8:PC=JumpAddr
PC=R][rs]
R[rt]={24"b0.M[R][rs]
+SignExtimm}(7:0)}
R[rt]={16"b0.M[R[rs]
+SignExtimm}(15:0)}
R[rt] = M[R[rs]+SignExtImm]
R[rt] = {imm, 16’b0}
R[rt] = M[R[rs]+SignExtImm]
R{rd] = ~ (R[rs] | R[rt))
R{rd] = R[rs] | R[rt]
R[rt] = R[rs] | ZeroExtImm
R[rd] = (R[rs]<R[rt])? 1 : 0
R[rt] = (R[rs] < SignExtImm)? | :
R[rt] = (R[rs] < SignExtImm)
71:0
R[rd] = (R[rs]<R[rt])? 1 : 0
R[rd] = R[rt] << shamt
R[rd] = R[rt] >> shamt
M[R[rsHSignExtImm](7:0) =
R[rt](7:0)
M[R[rsH#SignExtImm] = R[rt];
R[rt] = (atomic)? 1 : 0
M[R[rsHSignExtlmm](15:0) =
R[rt](15:0)

M[R[rsHSignExtImm] = R[rt]
R[rd] = R[rs] - R[1]
R{ed) = Rizs] - R{re)

OPCODE

/FUNCT
(Hex)

(1) 0/20y,.,
(1.2) Sbcx
(2) 9hcx

0/21.,

0/ 24,
(3) Chex
(@) hex
(4) Shu
(5) 2h¢x
(5) 3h¢x

(2)

(2)
(2.7)

(2) 23bc.\
0/ 2T ey
0/ 25y

(3) dnex
0/ 2ap.x

0(2) Ahex

(2,6) Bhex

(6) 0/2by,
0/ 00y,
0702,

28
(2) hex

2.7 38hex

2) Phex

(2) 2bpey
(1) 0722,
0/ 23,

NOTE THE FOLLOWING:

1. Instruction Format Types:

Rvslvsl

2. OPCODE/FUNCT (Hex)

3. Instruction formats:
Where the actual bits go

BASIC INSTRUCTION FORMATS

R opcode s rd shamt funct
31 26 25 21 20 16 15 11 10 65

I opcode s immediate
31 26 25 21 20 16 15

J opcode address
3l 26 25

itni, CS154, Wi20 32

PSEUDOINSTRUCTION SET NOTE THE FOLLOWING:

NAME MNEMONIC OPERATION

Branch Less Than blt if{R[rs]<R[rt]) PC = Label

Branch Greater Than bgt ifR[rs]>R[rt]) PC = Label .
Branch Less Than or Equal ble ifiR[rs]<=R[rt]) PC = Label 1. Pseudo-Instructions
Branch Greater Than or Equal bge if{R[rs]>=R|[rt]) PC = Label

Load Immediate 14 R[rd] = immediate * There are more of
Move move R[rd] = R[rs]

these, but in this class,
you are ONLY allowed
to use these + la

REGISTER NAME, NUMBER, USE, CALL CONVENTION

Szero 0 The Constant Value 0 NA. numbers
Sat 1 Assembler Temporary No
Talues Tor Funch e
SvO-Svl 2.3 Values for l'?muwn Rc§ulls No
and Expression Evaluation . d h .
$a0-Sa3 47 Arguments No 3. Registers and their
$t0-St7 8-15 Temporaries No
Ss0-Ss7 16-23 Saved Temporaries Yes USES
St8-S19 24-25 Temporaries No
Sk0-Skl 26-27 Reserved for OS Kemel No
Sep____ 28 Global Pointer Ves 4. Registers and their
Ssp 29 Stack Pointer Yes . .
3 30 Frame Pomnter Ves calling convention
Sra 31 Retumn Address No

1/15/20 Matni, CS154, Wi20 33

MEMORY ALLOCATION .
ORYALLOCATION _ STACKFRAME . NOTE THE FOLLOWING:
—» ‘ ac

Ssp 70T fifcy,., Y Memory
rgument 6 -
l Argument 5 Addresses
S —p—— .
! - 1. This is only part of
aved Registers Stack
ic Data
$gp 1000 8000y, | Grows the 2"9 page that you
Static Data -)
1000 0000y, EGH Vaianiss l need to know
T Ssp —pi
ext Low
pc —P0040 0000y, Wt
Memory
Opex Reserved Addresses
DATA ALIGNMENT
Double Word
Word Word
Halfword Halfword Halfword Halfword
Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte
1 2 3 4 5 | 7
Value of three least significant bits of byte addresg (Big Endian)
SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)
PRE- PRE- PRE- PRE-
SIZE FIX | SIZE FIX [SIZE FIX [SIZE FIX
10°,2'"% Kilo- [10",2%" Peta- | 107 milli- | 10"° femto-
1052 Mega- |10"%,2°" Exa- | 10® micro-| 107" atto-
10°,2° Giga- [10*',27° Zewa- | 107 nano- | 107! zepto-
10'2,2% Tera- [102,28 Youa- | 10712 pico- | 102* yocto-

The symbol for each prefix 1s just its first letter, except p is used for micro.

1/15/20 Matni, CS154, Wi20 34

Bring Out Your MIPS Reference Cards!

Look for the following instructions:

. nor
. addi
. beq

. move

Tell me everything you can about them, based on
what you see on the Ref Card!

1/15/20 Matni, CS154, Wi20 35

Exa m p | e 1 Syntax for “add”
add rd, rs, rt

destination, sourcel, source2

f=(g+h)=(i+]))
i.e. 550 = (551 + Ss2) — (Ss3 + Ss4)
\ J \ J
|

add $tO, $s1, $s2
add $t1, $s3, $s4
sub $s0, $to, $t1

1/15/20 Matni, CS154 , Wi20

Example 2

f=g*h-i
i.e. SsO = (Ssl * 552)}— Ss3

..................................

mult $s1, $s2
mflo $t0

mflo directs where the answer of the
mult should go

sub $s0, $t0, $s3

1/15/20 Matni, CS154, Wi20

37

Recap: The mult instruction

* To multiply 2 integers together:

1i $te, 5 # to = 5

1i $t1, 6 # t1l = 6

mult $t1, $to # multiply to * t1
mflo $t2 # t2 = to * t1

* mult cannot be used with an ‘immediate’ value
* Then we multiply our multiplier (St0) with our multiplicand (St1)

* And we put the result in the destination reg (St2) using the mflo
instruction

1/15/20 Matni, CS154, Wi20

38

Memory Operations

* Main memory used for composite data
* e.g.: Arrays, structures, dynamic data

* In MIPS, use the .data declaration to initialize memory values
(must be above .text declaration)

* Example:
.data
varl: .word 42
.text
la $t0, varl # to
lw $t1, 0(%$t0) # t1

&varl
*(&varl) = 42

1/15/20 Matni, CS154, Wi20

.data Example
name: .asciiz “Lisa speaks ” What dOES thlS dOP |

rtn: .asciiz “ languages!\n”

age: .word 7

.text
main:
Stack
1i $veo, 4 e
la $a0@, name # la = load memory address
syscall
la $t2, age
lw $a0, 0(%$t2) Heap
1li $vo, 1
syscall What goes in here? > ‘ Initialized Data \
1li $vo, 4 Uninitialized Data
BSS
la $a0@, rtn (BS9)
syscall
Y What goes in here? 2> Text
1li $vo, 10

syscall

.data Declaration Types
w/ Examples

varl: .byte 9

var2: .half 63
var3: .word 9433
numl: .float 3.14
num2 : .double 6.28
strl: .ascii "Text"

declare a single byte with value 9
declare a 16-bit half-word w/ val. 63
declare a 32-bit word w/ val. 9433
declare 32-bit floating point number
declare 64-bit floating pointer number
declare a string of chars

str3: .asciiz "Text" # declare a null-terminated string

H H H O HF O H OH H H

str2: .Space 5 reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.

1/15/20 Matni, CS64, Fal9 41

YOUR TO-DOs for the Week

* Do your reading for next class (see syllabus)

* Work on Assignment #1 for lab (lab01)
 Meet up in the lab this Friday
* Do the lab assignment
* You have to submit it as a PDF using Gradescope
e Due on Wednesday, 1/15, by 11:59:59 PM

1/15/20 Matni, CS154, Wi20

42

1/15/20

</LECTURE>

Matni, CS154, Wi20

43

