
CPU Instructions
CS 154: Computer Architecture

Lecture #4
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

•Lab 01 – due today!

•Lab 02 – description will be out soon!

1/15/20 Matni, CS154, Wi20 2

Lecture Outline

• Instruction Set Architectures (ISA)

•MIPS instruction formats
•Refresher on some other MIPS instructions

1/15/20 Matni, CS154, Wi20 3

Reference material from CS64 – I’ll be going over this a little fast…

Other Factors to CPU Performance:
Power Consumption

Market trends DEMAND that power consumption of CPUs keep
decreasing.
BUT Power and Performance DON’T always go together…

• Power = Capacitive Load x Voltage2 x Clock Frequency
• So:
• Decreasing Voltage helps to get lower power, but it can make individual

logic go slower!
• Increasing clock frequency helps performance, but increases power!

• It’s a dilemma that has contributed to Moore’s Law “plateau”

1/15/20 Matni, CS154, Wi20 4

Other Factors to CPU Performance:
Multiple Processors

•Multicore microprocessors
• More than one processor per chip

• Requires explicitly parallel programming
• Compare with instruction level parallelism
• Hardware executes multiple instructions at once
• Hidden from the programmer

• Hard to do
• Programming for performance
• Load balancing
• Optimizing communication and synchronization

1/15/20 Matni, CS154, Wi20 5

Pitfalls: Amdahl’s Law

• Improving an aspect of a computer and expecting a proportional
improvement in overall performance

• Your benchmark time is 100, 80 of which comes from a part of the CPU that
you want to improve by a factor of n, so:

Timproved = (80 / n) + 20

• If you wanted to improve your overall T by a factor of 2
(i.e. drop total from 100 to 50), then you’d need to make n = 2.7

because 50 = (80 / 2.7) + 20

• Keep that up! Let’s go for a factor of n = 5, so drop total from 100 to 20:
i.e. 20 ?= (80 / 5) + 20

1/15/20 Matni, CS154, Wi20 6

…ok…

…uh… can’t do that… L

Pitfalls: Idle Power

• Simply put:
CPUs will still draw disproportionate power when idling.

• Example, even when operating at 10% load,
the i7 will draw 47% of the power

• Becomes a problem when dealing with large scale implementations,
like data centers (Google, Facebook, Amazon, etc…)

• Design challenge: design processors to draw power more
proportional to load (requires Physics-level approach, tho…)

1/15/20 Matni, CS154, Wi20 7

Pitfall: MIPS as a Performance Metric

• Note: We’re NOT talking about MIPS the processor type!!!!

•MIPS (millions of instructions per second) is a popular
performance metric, HOWEVER…

• Doesn’t account for
• Differences in ISAs between computers

(some ISAs may be more efficient than others)
• Differences in complexity between instructions (weighted CPIs)

1/15/20 Matni, CS154, Wi20 8

1/15/20 Matni, CS154, Wi20 9

Instruction Set Architecture (ISA)

•The “contract” between software and hardware
(hence, it’s an abstract model of a computer!)

•Typically described with:
• programmer-visible states (i.e. registers + memory)
• the semantics/syntax of the instructions
• Examples abound in your MIPS Reference Card!

1/15/20 Matni, CS154, Wi20 10

Instruction Set Architecture (ISA)

Many implementations possible for a given ISA

•Most microprocessor families have their own ISA

• Some can be shared across families (b/c they’re popular)
• Example: AMD and Intel processors both run the x86-64 ISA (orig. Intel).

• Some of the same ISAs can be customized
• Many cellphones use the ARM ISA with specific implementations from

many different companies including
Apple, Qualcomm, Samsung, Huawei, etc.

•We’ll be using the MIPS ISA in this class.
1/15/20 Matni, CS154, Wi20 11

Classification of ISAs

• By architectural complexity*
• CISC (complex instruction set computer) and

RISC (reduced instruction set computer)

• By instruction-level parallelism
• VLIW (very long instruction word) and

EPIC (explicitly parallel instruction computing)

• By extreme simplification of instructions
• MISC (minimal instruction set computer) and

OISC (one instruction set computer)

1/15/20 Matni, CS154, Wi20 12

Intel, AMD (x86) CISC
ARM, MIPS RISC
GPUs (AMD, Nvidia) RISC
Intel/HP (IA-86) EPIC

CISC vs RISC:
• Higher instruction

complexity (and CPI)
• More transistors
• Higher power
• Commercial computers

vs. embedded computers

EPIC/VLIW:
• Less commercial than

CISC/RISC
• Server/supercomputer

use mostly

MISC/OISC:
• Little to no parallelism
• Mostly in research

* Most popular distinction in commercial CPUs

The MIPS ISA

• Developed at Stanford then commercialized by MIPS
Technologies, created/led by John Hennessey
• Stanford CS prof, President (2000-16), author of our textbook…
• Started multiple important SV companies,

current Chair of Alphabet, Inc.

• Hennessey and Patterson won the 2017 Turing Award for
their work in developing RISC architecture

•MIPS still has a large share of embedded core market
• Consumer electronics, storage peripherals, cameras, printers, …

1/15/20 Matni, CS154, Wi20 13

Code on MIPS

Original

x = 5;
y = 7;
z = x + y;

1/15/20 Matni, CS154, Wi20 14

MIPS
li $t0, 5
li $t1, 7
add $t3, $t0, $t1

1/15/20 Matni, CS154, Wi20 15

Available Registers in MIPS

U
se

d
fo

r d
at

a

32 registers in all
• Refer to your

MIPS Reference Card

• Bring it to class
from now on…

• Copy on main
webpage

MIPS Instruction Formats

•Each instruction is represented with 32 bits

•There are three different instruction formats: R, I, J
• These allow for instructions to take on different roles
• R-Format is used when it’s all about registers
• I-Format is used when you involve (immediate) numbers
• J-Format is used when you do code “jumping”

(i.e. branching)

1/15/20 Matni, CS154, Wi20 16

1/15/20 Matni, CS154, Wi20 17

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Remember: Memory is addressed in Bytes.

1/15/20 Matni, CS154, Wi20 18

1/15/20 Matni, CS154, Wi20 19

1/15/20 Matni, CS154, Wi20 20

1/15/20 Matni, CS154, Wi20 21

1/15/20 Matni, CS154, Wi20 22

1/15/20 Matni, CS154, Wi20 23

1/15/20 Matni, CS154, Wi20 24

1/15/20 Matni, CS154, Wi20 25

1/15/20 Matni, CS154, Wi20 26

1/15/20 Matni, CS154, Wi20 27

Talking to the OS

• We are going to be running on MIPS emulator called SPIM
• Optionally, through a program called QtSPIM (GUI based)
• What is an emulator?

• MIPS features a syscall instruction, which triggers a software
interrupt, or exception

• Outside of an emulator (i.e. in the real world), these instructions
pause the program and tell the OS to go do something with I/O

• Inside the emulator, it tells the emulator to go emulate something
with I/O

1/15/20 Matni, CS154, Wi20 28

syscall (for spim use)

•The OS/emulator has access to the CPU registers

•So we have the OS/emulator’s attention, but how
does it know what we want?

•We put special values (codes) in the registers to
indicate what we want
• These are codes that can’t be used for anything else, so

they’re understood to be just for syscall
• So… is there a “code book”????

1/15/20 Matni, CS154, Wi20 29

Yes! All CPUs come with manuals.
For us, we have the MIPS Ref. Card

1/15/20 30

MIPS System Services

stdout

stdin

File I/O

System call code: placed in $v0
Argument: placed in $a0

1/15/20 Matni, CS154, Wi20 31

Bring out your MIPS Reference Cards!

1/15/20 Matni, CS154, Wi20 32

NOTE THE FOLLOWING:

1. Instruction Format Types:
R vs I vs J

2. OPCODE/FUNCT (Hex)

3. Instruction formats:
Where the actual bits go

1/15/20 Matni, CS154, Wi20 33

NOTE THE FOLLOWING:

1. Pseudo-Instructions
• There are more of

these, but in this class,
you are ONLY allowed
to use these + la

2. Registers and their
numbers

3. Registers and their
uses

4. Registers and their
calling convention

1/15/20 Matni, CS154, Wi20 34

NOTE THE FOLLOWING:

1. This is only part of
the 2nd page that you
need to know

Bring Out Your MIPS Reference Cards!

Look for the following instructions:

• nor
• addi
• beq
• move

Tell me everything you can about them, based on
what you see on the Ref Card!

1/15/20 Matni, CS154, Wi20 35

Example 1

f = (g + h) – (i + j)
i.e. $s0 = ($s1 + $s2) – ($s3 + $s4)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

1/15/20 Matni, CS154, Wi20 36

add rd, rs, rt
destination, source1, source2

Syntax for “add”

Example 2

f = g * h - i
i.e. $s0 = ($s1 * $s2) – $s3

mult $s1, $s2
mflo $t0
mflo directs where the answer of the
mult should go

sub $s0, $t0, $s3

1/15/20 Matni, CS154, Wi20 37

Recap: The mult instruction

• To multiply 2 integers together:

li $t0, 5 # t0 = 5
li $t1, 6 # t1 = 6

mult $t1, $t0 # multiply t0 * t1
mflo $t2 # t2 = t0 * t1

• mult cannot be used with an ‘immediate’ value

• Then we multiply our multiplier ($t0) with our multiplicand ($t1)

• And we put the result in the destination reg ($t2) using the mflo
instruction

1/15/20 Matni, CS154, Wi20 38

Memory Operations

• Main memory used for composite data
• e.g.: Arrays, structures, dynamic data
• In MIPS, use the .data declaration to initialize memory values

(must be above .text declaration)

• Example:

.data
var1: .word 42

.text
la $t0, var1 # t0 = &var1

lw $t1, 0($t0) # t1 = *(&var1) = 42

1/15/20 Matni, CS154, Wi20 39

40

Example
What does this do?

.data
name: .asciiz “Lisa speaks ”
rtn: .asciiz “ languages!\n”
age: .word 7

.text
main:

li $v0, 4
la $a0, name # la = load memory address
syscall

la $t2, age
lw $a0, 0($t2)
li $v0, 1
syscall

li $v0, 4
la $a0, rtn
syscall

li $v0, 10
syscall

What goes in here? à

What goes in here? à

.data Declaration Types
w/ Examples

var1: .byte 9 # declare a single byte with value 9
var2: .half 63 # declare a 16-bit half-word w/ val. 63
var3: .word 9433 # declare a 32-bit word w/ val. 9433
num1: .float 3.14 # declare 32-bit floating point number
num2: .double 6.28 # declare 64-bit floating pointer number
str1: .ascii "Text" # declare a string of chars
str3: .asciiz "Text" # declare a null-terminated string
str2: .space 5 # reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.

1/15/20 Matni, CS64, Fa19 41

YOUR TO-DOs for the Week

• Do your reading for next class (see syllabus)

•Work on Assignment #1 for lab (lab01)
• Meet up in the lab this Friday
• Do the lab assignment
• You have to submit it as a PDF using Gradescope
• Due on Wednesday, 1/15, by 11:59:59 PM

1/15/20 Matni, CS154, Wi20 42

1/15/20 Matni, CS154, Wi20 43

