CPU Instructions and Procedure Calls;

CS 154: Computer Architecture
Lecture #5
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

*Lab 02 — due today!

*Lab 03 — stay tuned...

1/22/20 Matni, CS154 , Wi20

Lecture Outline

* MIPS instruction formats

* Refresher on some other MIPS instructions and
concepts

Reference material from CS64 — I’ll be going over this a little fast...

1/22/20 Matni, CS154, Wi20

.data Example
name: .asciiz “Lisa speaks ” What dOES thlS dOP |

rtn: .asciiz “ languages!\n”

age: .word 7

.text
main:
Stack
1i $veo, 4 e
la $a0@, name # la = load memory address
syscall
la $t2, age
lw $a0, 0(%$t2) Heap
1li $vo, 1
syscall What goes in here? > ‘ Initialized Data \
1li $vo, 4 Uninitialized Data
BSS
la $a0@, rtn (BS9)
syscall
Y What goes in here? 2> Text
1li $vo, 10

syscall

.data Declaration Types

w/ Examples
varl: .byte 9
var2: .half 63
var3: .word 9433
numl: .float 3.14
num2 : .double 6.28
strl: .ascii "Text"
str3: .asciiz "Text"
str2: .Space 5

H H H O HF O H OH H H

declare a single byte with value 9
declare a 16-bit half-word w/ val. 63
declare a 32-bit word w/ val. 9433
declare 32-bit floating point number
declare 64-bit floating pointer number
declare a string of chars

declare a null-terminated string
reserve 5 bytes of Space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.

1/22/20

Matni, CS64, Fal9 5

Integers in MIPS

Unsigned 32-bits

*Rangeis0to +232-1 (or +4,294,967,295)

* Remember positional notation!

* For when converting to decimal — remember LSB is
position 0

e Example: What is 0x00881257 in decimal?

e Answer: 7 + 24+ 264+ 2%+ 21242194 223 =8 917,591

1/22/20 Matni, CS154, Wi20

Integers in MIPS

Signed (2s Complement) 32-bits

*Range is -231to +231 -1
* Remember the 2s complement formula!

* Negate all bits and then add 1
e Example: What is OxFFFE775C in decimal?

* Answer: negative 0x000188A4
=-(4+2°+27+ 211 + 215 4+ 216)
=-10,0516

1/22/20 Matni, CS154, Wi20

Sighed Integers in MIPS

* Some specific numbers

* 0: 0000 0000 ... 0000
e —1: 11111111 ..1111
* Most-negative: 1000 0000 ... 0000

* Most-positive: 0111 1111 ... 1111

* Representing a number using more bits
* You want to preserve the numeric value
* Example: +6 in 4-bits (0110) becomes 00000110 in 8-bits
* Example: -6 in 4-bits (1010) becomes 11111010 in 8-bits
* When does this happen in MIPS?

* Think of I-type instructions

1/22/20 Matni, CS154, Wi20

MIPS Instructions: Syntax

<op> <rd>, <rs>, <rt>

op : operation

rd : register destination
rs : register source

rt : register target

<op> <rt>, <rs>, immed

op : operation
rs : register source
rt : register target

1/22/20 Matni, CS154, Wi20

MIPS Instruction Formats

Recall:

* There are three different instruction formats: R, |,)

* ALL core instructions are 32 bits long

6b 5b 5b 5b 5b 6b
R-Type| op rs rt rd shamt funct
I-Type op rs rt address
6b 5b 5b 16 b

1/22/20

Matni, CS154, Wi20

10

Instruction Representation in R-Type

op rs rt rd shamt funct
6b 5b 5b 5b 5b 6 b
31-26 25-21 20-16 15-11 10-6 5-0

* The combination of the opcode and the funct code tell the
processor what it is supposed to be doing

* Example:
add $t0, $sl1, $s2 0x02324020
op rs rt rd shamt funct
0 17 18 8 0 32
op =0, funct =32 (0x20) means “add”
rs =17 means “Ss1”
rt=18 means “Ss2”
rd =8 means “St0”

shamt=0 means this field is unused in this instruction

1/22/20 Matni, CS154, Wi20 11

Instruction Representation in |-Type

op rs rt address
6b 5b | 5b 16 b
31-26 25-21 20-16 15-0
* Example:
addi $te, $se, 124 PXI20EEGIC
op rs rt address/const
8 16 8 124
op=28 mean “addi”
rs =16 means “$s0”
rt=8 means “St0”

address/const = 124 (0x007C) is the 16b immediate value

Worth checking out: https://www.eg.bucknell.edu/~csci320/mips_web/

1/22/20 Matni, CS154, Wi20 12

https://www.eg.bucknell.edu/~csci320/mips_web/

Pseudoinstructions

* Instructions that are NOT core to the CPU
* They’re “macros” of other actual instructions

e Often they are slower (higher CPIl) than core instructions

* Examples:

1i $to, C
Is a macro for:
lui $to, C_hi
ori $to, $t, C_lo move $t0, $t1
Is a macro for:
addu $to, $zero, $t1

https://qgithub.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions has more examples
1/22/20 Matni, CS154, Wi20 13

https://github.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions

Bitwise Operations

Operation MIPS
Shift left << sl
Shift right >> srl, sra
Bitwise AND & and, andi
Bitwise OR | or, ori
Bitwise NOT ~ nor*
Bitwise XOR A Xor

* Specifically, nor $t0, $t@, 0 is equivalentto not(t0)

1/22/20 Matni, CS154, Wi20 14

Conditional Operations

* Branch to a labeled instruction if a condition is true
e Otherwise, continue sequentially

*beq rs, rt, L1 often used with s1t, slti
* if (rs == rt) branch to instruction labeled L1;

*bne rs, rt, L1 often used with s1t, slti
* if (rs !=rt) branch to instruction labeled L1;

* MIPS also has the pseudoinstructions: ble, blt, bge, bgt

* But pseudoinstructions run slower...

-5 L1
* Unconditional jump to instruction labeled L1

1/22/20 Matni, CS154, Wi20 15

Example

e C/C++ code:

while (save[i]

e Given: var 1in $s3, kin $s5,

* [n MIPS:
Loop:

sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, o($t1)

bne $t0, $s5, Exit
addi $s3, $s3, 1

j Loop

Exit: ..

1/22/20

Matni, CS154, Wi20

== k) i += 1;

address of save in $s6

16

Procedure Calls (aka Calling Functions)

* Procedure call: jump and link
jal FunctionlLabel
 Address of following instruction put in Sra
 Jumps to target address

* Procedure return: jump register
jr $ra
* Copies Sra to program counter
* Can also be used for computed jumps

* e.g., for case/switch statements

1/22/20 Matni, CS154, Wi20

17

Calling Nested or Recursive Functions

* What happens when you have a saved return address in Sra....
... and then you call ANOTHER function?

 We have to use a standardized way of calling functions
* The MIPS Calling Convention

 Especially important when different dev. teams are making different
functions in a project

* Also simplifies program testing

* Some registers will be presumed to be “preserved” across a call ;
Others will not

1/22/20 Matni, CS154, Wi20

18

The MIPS Calling Convention In Its Essence

e Remember: Preserved vs Regs
* Preserved: $s0 - Ss7, and Sra, and Ssp (by default)
* Unpreserved: S$t0-St9, Sa0-S$a3, and SvO - Svl

 Values held in Preserved Regs immediately before a function call
MUST be the same immediately after the function returns.

* Use the stack memory to save these

* Values held in Unpreserved Regs must always be assumed to change
after a function call is performed.

* Sa0 - Sa3 are for passing arguments into a function
* SvO0 - Sv1 are for passing values from a function

1/22/20 Matni, CS154, Wi20 19

YOUR TO-DOs for the Week

*Readings!
*Chapters 2.10-2.13

*Stay Tuned for Lab Assignment!
* Will be announced on Piazza

1/22/20 Matni, CS154, Wi20

1/22/20

</LECTURE>

Matni, CS154, Wi20

21

