
CPU Instructions and Procedure Calls
CS 154: Computer Architecture

Lecture #5
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

•Lab 02 – due today!

•Lab 03 – stay tuned…

1/22/20 Matni, CS154, Wi20 2

Lecture Outline

•MIPS instruction formats
•Refresher on some other MIPS instructions and

concepts

1/22/20 Matni, CS154, Wi20 3

Reference material from CS64 – I’ll be going over this a little fast…

4

Example
What does this do?

.data
name: .asciiz “Lisa speaks ”
rtn: .asciiz “ languages!\n”
age: .word 7

.text
main:

li $v0, 4
la $a0, name # la = load memory address
syscall

la $t2, age
lw $a0, 0($t2)
li $v0, 1
syscall

li $v0, 4
la $a0, rtn
syscall

li $v0, 10
syscall

What goes in here? à

What goes in here? à

.data Declaration Types
w/ Examples

var1: .byte 9 # declare a single byte with value 9
var2: .half 63 # declare a 16-bit half-word w/ val. 63
var3: .word 9433 # declare a 32-bit word w/ val. 9433
num1: .float 3.14 # declare 32-bit floating point number
num2: .double 6.28 # declare 64-bit floating pointer number
str1: .ascii "Text" # declare a string of chars
str3: .asciiz "Text" # declare a null-terminated string
str2: .space 5 # reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.

1/22/20 Matni, CS64, Fa19 5

Integers in MIPS

Unsigned 32-bits

•Range is 0 to +232 – 1 (or +4,294,967,295)

•Remember positional notation!
• For when converting to decimal – remember LSB is

position 0
• Example: What is 0x00881257 in decimal?
• Answer: 7 + 24 + 26 + 29 + 212 + 219 + 223 = 8,917,591

1/22/20 Matni, CS154, Wi20 6

Integers in MIPS

Signed (2s Complement) 32-bits

•Range is -231 to +231 – 1
•Remember the 2s complement formula!
•Negate all bits and then add 1
• Example: What is 0xFFFE775C in decimal?
• Answer: negative 0x000188A4

= - (4 + 25 + 27 + 211 + 215 + 216)
= -10,0516

1/22/20 Matni, CS154, Wi20 7

Signed Integers in MIPS

• Some specific numbers
• 0: 0000 0000 … 0000
• –1: 1111 1111 … 1111
• Most-negative: 1000 0000 … 0000
• Most-positive: 0111 1111 … 1111

• Representing a number using more bits
• You want to preserve the numeric value
• Example: +6 in 4-bits (0110) becomes 00000110 in 8-bits
• Example: -6 in 4-bits (1010) becomes 11111010 in 8-bits
•When does this happen in MIPS?
• Think of I-type instructions

1/22/20 Matni, CS154, Wi20 8

MIPS Instructions: Syntax

<op> <rd>, <rs>, <rt>
op : operation
rd : register destination
rs : register source
rt : register target

<op> <rt>, <rs>, immed
op : operation
rs : register source
rt : register target

1/22/20 Matni, CS154, Wi20 9

MIPS Instruction Formats

Recall:
•There are three different instruction formats: R, I, J
•ALL core instructions are 32 bits long

1/22/20 Matni, CS154, Wi20 10

6 b 5 b 5 b 5 b 5 b 6 b

6 b 5 b 5 b 16 b

R-Type

I-Type

Instruction Representation in R-Type

• The combination of the opcode and the funct code tell the
processor what it is supposed to be doing
• Example:

add $t0, $s1, $s2

op = 0, funct = 32 (0x20) means “add”
rs = 17 means “$s1”
rt = 18 means “$s2”
rd = 8 means “$t0”
shamt = 0 means this field is unused in this instruction

1/22/20 Matni, CS154, Wi20 11

op
0

funct
32

rs
17

rt
18

rd
8

shamt
0

0x02324020

Instruction Representation in I-Type

• Example:
addi $t0, $s0, 124

op = 8 mean “addi”
rs = 16 means “$s0”
rt = 8 means “$t0”
address/const = 124 (0x007C) is the 16b immediate value

1/22/20 Matni, CS154, Wi20 12

op
8

address/const
124

rs
16

rt
8

0x2208007C

Worth checking out: https://www.eg.bucknell.edu/~csci320/mips_web/

https://www.eg.bucknell.edu/~csci320/mips_web/

Pseudoinstructions

• Instructions that are NOT core to the CPU
• They’re “macros” of other actual instructions
• Often they are slower (higher CPI) than core instructions

• Examples:

1/22/20 Matni, CS154, Wi20 13

li $t0, C
Is a macro for:

lui $t0, C_hi
ori $t0, $t, C_lo move $t0, $t1

Is a macro for:
addu $t0, $zero, $t1

https://github.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions has more examples

https://github.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions

Bitwise Operations

Operation C/C++ MIPS
Shift left << sll
Shift right >> srl, sra
Bitwise AND & and, andi
Bitwise OR | or, ori
Bitwise NOT ~ nor*
Bitwise XOR ^ xor

1/22/20 Matni, CS154, Wi20 14

* Specifically, nor $t0, $t0, 0 is equivalent to not(t0)

Conditional Operations

• Branch to a labeled instruction if a condition is true
• Otherwise, continue sequentially

• beq rs, rt, L1 often used with slt, slti
• if (rs == rt) branch to instruction labeled L1;

• bne rs, rt, L1 often used with slt, slti
• if (rs != rt) branch to instruction labeled L1;

• MIPS also has the pseudoinstructions: ble, blt, bge, bgt
• But pseudoinstructions run slower…

• j L1
• Unconditional jump to instruction labeled L1

1/22/20 Matni, CS154, Wi20 15

Example

• C/C++ code: while (save[i] == k) i += 1;
• Given: var i in $s3, k in $s5, address of save in $s6

• In MIPS:
Loop:

sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

1/22/20 Matni, CS154, Wi20 16

Procedure Calls (aka Calling Functions)

•Procedure call: jump and link
jal FunctionLabel

• Address of following instruction put in $ra
• Jumps to target address

•Procedure return: jump register
jr $ra

• Copies $ra to program counter
• Can also be used for computed jumps
• e.g., for case/switch statements

1/22/20 Matni, CS154, Wi20 17

Calling Nested or Recursive Functions

• What happens when you have a saved return address in $ra….
… and then you call ANOTHER function?

• We have to use a standardized way of calling functions
• The MIPS Calling Convention

• Especially important when different dev. teams are making different
functions in a project
• Also simplifies program testing

• Some registers will be presumed to be “preserved” across a call ;
Others will not

1/22/20 Matni, CS154, Wi20 18

The MIPS Calling Convention In Its Essence

• Remember: Preserved vs Unpreserved Regs
• Preserved: $s0 - $s7, and $ra, and $sp (by default)
• Unpreserved: $t0 - $t9, $a0 - $a3, and $v0 - $v1

• Values held in Preserved Regs immediately before a function call
MUST be the same immediately after the function returns.
• Use the stack memory to save these

• Values held in Unpreserved Regs must always be assumed to change
after a function call is performed.
• $a0 - $a3 are for passing arguments into a function
• $v0 - $v1 are for passing values from a function

1/22/20 Matni, CS154, Wi20 19

YOUR TO-DOs for the Week

•Readings!
•Chapters 2.10 – 2.13

•Stay Tuned for Lab Assignment!
•Will be announced on Piazza

1/22/20 Matni, CS154, Wi20 20

1/22/20 Matni, CS154, Wi20 21

