
CPU Procedure Calls
Memory Addressing Modes

CS 154: Computer Architecture
Lecture #6

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

•Lab 03 – how is that going?

1/27/20 Matni, CS154, Wi20 2

Lecture Outline

•CPU Procedure Calls
• The MIPS Calling Convention

•Memory Addressing Modes

•Character Representations

•Parallelism and Synchronization

1/27/20 Matni, CS154, Wi20 3

The MIPS Calling Convention In Its Essence

• Remember: Preserved vs Unpreserved Regs
• Preserved: $s0 - $s7, and $ra, and $sp (by default)
• Unpreserved: $t0 - $t9, $a0 - $a3, and $v0 - $v1

• Values held in Preserved Regs immediately before a function call
MUST be the same immediately after the function returns.
• Use the stack memory to save these

• Values held in Unpreserved Regs must always be assumed to change
after a function call is performed.
• $a0 - $a3 are for passing arguments into a function
• $v0 - $v1 are for passing values from a function

1/27/20 Matni, CS154, Wi20 4

Example

•C/C++ code:
int fact (int n)
{

if (n < 1) return 1;
else return n * fact(n - 1);

}

Remember:
•Argument n in $a0
•Result in $v0
1/27/20 Matni, CS154, Wi20 5

Example continued…
fact:

addi $sp, $sp, -8 # adjust stack for 2 items

sw $ra, 4($sp) # push (save) return address

sw $s0, 0($sp) # push (save) argument

move $s0, $a0

li $t0, 1

blt $s0, $t0, else

mult $v0, $s0

mflo $v0

addi $a0, $a0, -1

jal fact

1/27/20 6

else:
lw $s0, 0($sp) # restore original n
lw $ra, 4($sp) # restore return address
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra

main:
li $v0, 1
li $a0, 5
jal fact # Expect to see returned value in $v0

int fact (int n)
{

if (n < 1) return 1;
else return n * fact(n - 1);

}

Variable Storage Classes

RECALL:

• A C/C++ variable is generally a location in memory

• A variable has type (e.g. int, char)
and storage class (automatic vs. static)

• Automatic variables: local to a part of the program, created & discarded

• Static variables: global vars (declared outside or using static in C/C++)

• MIPS software reserves the global pointer register, $gp, to get access to
automatic variables.

1/27/20 Matni, CS154, Wi20 7

Memory Layout

• Text: program code

• Static data: global variables
• e.g., static variables in C, constant arrays and strings
• $gp initialized to address allowing ±offsets into this segment

• Heap: dynamic data
• e.g., malloc/free in C, new in C++,

used for linked lists, dynamic arrays, etc…

• Stack: automatic storage

1/27/20 Matni, CS154, Wi20 8

Stack & Heap in MIPS

• The stack is used for saving vars when
procedures (functions) are called
• Also used to store some local vars to the function that can’t fit in registers,

like local arrays or structures

• The stack starts in the high end of memory and grows down

• The heap is used for saving vars that are dynamic data structures

• The heap starts in the low end (after static data) and grows up
• Allows the stack and heap to grow toward each other, allowing efficient use

of memory.

1/27/20 Matni, CS154, Wi20 9

Character Data in Computers

Byte-encoded character sets like:

• ASCII (7 bits, i.e. 128 characters)

• No longer used, in favor of UTF-8, which is…

• Unicode: 8, 16, and 32-bit character set

• Used in Java, C++ wide characters, …

• Contains most of the world’s alphabets, plus symbols

• UTF-8, UTF-16: variable-length encodings (8-bits, 16-bits, respectively)

1/27/20 Matni, CS154, Wi20 10

Character Data in Assembly

• Must be stored in memory (Use the .data directive)

• Loading them from memory to a register requires:
lw (load word), lh (load half-word), or lb (load byte)
• Especially if you want to do an operation on the data

(like to change the value of the data)

Or la (load address)
• Especially if you want to do a syscall on the data

(you need the address for that)

• When you use lh or lb, the sign is extend to 32 bits

• Equivalents with sw (store word), sh (store half-word), and sb (store byte)

1/27/20 Matni, CS154, Wi20 11

Representation of Strings

• Characters combined = strings

• 3 choices for representing a string:
1. 1st position of the string is reserved to give the length of a string (int)
2. There’s an accompanying var for the length of the string

(usually in a structure)
3. The last position of a string is indicated by a EOS character (null or \0)

• C/C++ uses #3
• So, the string “UCSB” is 5 bytes because the last one is \0

1/27/20 Matni, CS154, Wi20 12

Example

C code (naïve), i.e. with null-terminated string
void strcpy (char x[], char y[])
{

int i;
i = 0;
while ((x[i]=y[i])!='\0’)

i += 1;
}

• Addresses of vars x, y in $a0, $a1
• Variable i in $s0

1/27/20 Matni, CS154, Wi20 13

Example in Assembly
strcpy:

addi $sp,$sp,–4 # adjust stack for 1 more item
sw $s0, 0($sp) # save $s0, will use it for i
add $s0, $zero, $zero # i = 0 (why not use li?)

L1: add $t1, $s0, $a1 # &y[i] in $t1 (no ref + ix4?)
lbu $t2, 0($t1) # $t2 = y[i] (i.e. dereferenced)
add $t3, $s0, $a0 # &x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # if y[i] == 0 (i.e. \0), go to L2
addi $s0, $s0, 1 # else, i = i + 1
j L1 # Repeat loop

L2: lw $s0, 0($sp) # y[i] == 0: end of string.
addi $sp, $sp, 4 # Restore old $s0; pop 1 word off stack
jr $ra # return

14

Branch Addressing

I-Type of instruction (beq , bne)
• Branch instructions specify:

Opcode + 2 registers + target address
•Most branch targets are near the branch instruction in the text

segment of memory
• Either ahead or behind it

• Addressing can be done relative to the value in PC Reg.
(“PC-Relative Addressing”)
• Target address = PC + offset (in words) x 4
• PC is already incremented by 4 by this time

1/27/20 Matni, CS154, Wi20 15

Branching Far Away

If branch target is too far to encode with 16-bit
offset, then assembler will rewrite the code

•Example
beq $s0, $s1, L1 # L1 is far away

bne $s0, $s1, L2 # rewritten…
j L1

L2: ...

1/27/20 Matni, CS154, Wi20 16

Jump Addressing

J-Type of instruction (j , jal)

• Jump (j and jal) targets could be anywhere in text segment

• Encode full address in instruction

• Direct jump addressing
• Target address = (address x 4) OR (PC[31: 28])
• i.e. Take the 4 most sig. bits in PC

and concatenate the 26 bits in “address” field
and then concatenate another 00 (i.e x 4)

1/27/20 Matni, CS154, Wi20 17

Target Addressing Example

• Assume Loop is at location 80000

1/27/20 Matni, CS154, Wi20 18

1/27/20 Matni, CS154, Wi20 19

Addressing
Mode Summary

Examples:

addi $t0, $t0, 42

add $t0, $t1, $t3

lw $t0, 4($t1)

beq $t0, $t1, L1

j L1

YOUR TO-DOs for the Week

•Readings!
•Chapters 2.11 – 2.13

•Turn in Lab 3!

1/27/20 Matni, CS154, Wi20 20

1/27/20 Matni, CS154, Wi20 21

