
Instructions and Programs
CS 154: Computer Architecture

Lecture #7
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

•I got nada

1/29/20 Matni, CS154, Wi20 2

Lecture Outline

•Branch and Jump Addressing

•Parallelism and Synchronization

•Going from File to Machine Code

•Relative Performance Comparisons

1/29/20 Matni, CS154, Wi20 3

Branch Addressing

I-Type of instruction (beq , bne)
• Branch instructions specify:

Opcode + 2 registers + target address
•Most branch targets are near the branch instruction in the text

segment of memory
• Either ahead or behind it

• Addressing can be done relative to the value in PC Reg.
(“PC-Relative Addressing”)
• Target address = PC + offset (in words) x 4
• PC is already incremented by 4 by this time

1/29/20 Matni, CS154, Wi20 4

Branching Far Away

If branch target is too far to encode with 16-bit
offset, then assembler will rewrite the code

•Example
beq $s0, $s1, L1 # L1 is far away

bne $s0, $s1, L2 # rewritten…
j L1

L2: ...

1/29/20 Matni, CS154, Wi20 5

Jump Addressing

J-Type of instruction (j , jal)

• Jump (j and jal) targets could be anywhere in text segment

• Encode full address in instruction

• Direct jump addressing
• Target address = (address x 4) OR (PC[31: 28])
• i.e. Take the 4 most sig. bits in PC

and concatenate the 26 bits in “address” field
and then concatenate another 00 (i.e x 4)

1/29/20 Matni, CS154, Wi20 6

Target Addressing Example

• Assume Loop is at location 80000

1/29/20 Matni, CS154, Wi20 7

1/29/20 Matni, CS154, Wi20 8

Addressing
Mode Summary

Examples:

addi $t0, $t0, 42

add $t0, $t1, $t3

lw $t0, 4($t1)

beq $t0, $t1, L1

j L1

Parallelism and Synchronization

• Consider: 2 processors sharing an area of memory
• P1 writes, then P2 reads

• There may be a “data race” if P1 and P2 don’t synchronize
• Result depends of order of accesses

• Hardware support required
• “Atomic” read/write memory operation,

i.e. no other mem. access allowed between the read and write

• Could be a single instruction
• E.g., atomic swap of register ↔ memory
• Or an atomic pair of instructions (like ll & sc)

1/29/20 Matni, CS154, Wi20 9

Synchronization in MIPS

• Load link: ll rt, offset(rs)

• Store conditional: sc rt, offset(rs)
• Succeeds if location not changed since the ll: Returns 1 in rt
• Fails if location is changed: Returns 0 in rt

• ll returns the current value of a memory location

• A subsequent sc to the same memory location will store a new
value there only if no updates have occurred to that location since
the ll.

1/29/20 Matni, CS154, Wi20 10

Going From File to Machine Code

• There are 4 steps in transforming a program in a file into a program
running on a computer

1. Compiler
• Takes a program in a HLL and translates to assembly language
• Some compilers have assemblers & linkers built-in

2. Assembler
• Takes care of pseudoinstructions, number conversions (to hex)
• Produces an object file (a combination of machine language instructions,

data, and information needed to place instructions properly in memory)
• This has to determine the addresses corresponding to all labels

1/29/20 Matni, CS154, Wi20 11

Producing an Object Module

• Header: described contents of object module

• Text segment: translated instructions

• Static data segment: data allocated for the life of the program

• Relocation info: for contents that depend on absolute location
of loaded program

• Symbol table: global definitions and external refs

• Debug info: for associating with source code

This may not have all the references/labels resolved yet

1/29/20 Matni, CS154, Wi20 12

Going From File to Machine Code (cont…)

3. Linker
• When a program comprises multiple object files, the linker combines these

files into a unified executable program, resolving the symbols (references) as
it goes along.

• There are 3 steps for the linker:
1. Place code and data modules symbolically in memory.
2. Determine the addresses of data and instruction labels.
3. Patch both the internal and external references.

• This produces one executable file with machine language instructions.

4. Loader
• OS program that takes the executable code, sets up CPU memory for it,

copies over the instructions to CPU memory, initializes all registers,
jumps to the start-up routine (i.e. usually main:)

1/29/20 Matni, CS154, Wi20 13

Translation and Startup

1/29/20 Matni, CS154, Wi20 14

4 steps in transforming a program in a file into a program running on a computer

Dynamic Linking

• Only finish linking a library procedure when it is called.

Pros:

• Often-used libraries need to be stored in only one location, not duplicated
in every single executable file.
• Saves memory and disk space

• Updates/fixes to one library can be done modularly. Cuts down on
compiling time.

Cons:

• "DLL hell”: newer version of library is not backward compatible.

1/29/20 Matni, CS154, Wi20 15

Java

• Java was invented to be different than C/C++
• Intended to let application developers “write once, run anywhere”

• Rather than compile to the assembly language of a target computer,
Java is compiled first to the Java bytecode instruction set
• These run on any Java virtual machine (JVM) regardless of the underlying

computer architecture
• JVM is a software interpreter that simulates an ISA
• Advantage: portability

• JVMs are found in hundreds of millions of devices (cell phones, Internet browsers, etc…)

• Performance can be enhanced with “Just-in-Time” compilation (JIT)

• Java is very popular, but still generally slower than C/C++

1/29/20 Matni, CS154, Wi20 16

Program Performance:
Effect of Compiler Optimization on sort Program

1/29/20 Matni, CS154, Wi20 17
Ultimately, O3 runs the fastest.
Instruction count and CPI are not good performance indicators in isolation

*

*

*

Program Performance:
Effect of Language and Algorithm

1/29/20 Matni, CS154, Wi20 18

*

*

*

1. Compiler
optimizations are
sensitive to the
algorithm

2. Java/JIT compiled
code is significantly
faster than JVM
interpreted

3. Nothing can fix a
dumb algorithm!

YOUR TO-DOs for the Week

•Readings!

•Work on Lab 4!

1/29/20 Matni, CS154, Wi20 19

1/29/20 Matni, CS154, Wi20 20

