

Arithmetic for Computers 1

CS 154: Computer Architecture Lecture #8 Winter 2020

Ziad Matni, Ph.D. Dept. of Computer Science, UCSB Administrative

• Lab 4 underway...

• Syllabus (Schedule Section) has been updated

Midterm Exam (Wed. 2/12)

What's on It?

• Everything we've covered in lecture from start to Monday, 2/10

What Else?

- Closed book some notes (details to follow)
- Random seat assignments come to class EARLY!

Lecture Outline

• MIPS Instructions: Arrays vs. Pointers

- Arithmetic
 - Addition / Subtraction
 - Multiplication / Division

Arrays vs. Pointers

- Array indexing involves
 - Multiplying index by element size
 - Adding to array base address

• Pointers correspond directly to memory addresses

• Can avoid indexing complexity

Example: Clearing an Array (the classic way)

```
clear1(int array[], int size) {
  int i;
  for (i = 0; i < size; i += 1)
   array[i] = 0;
}
      move t0, zero \# i = 0
loop1: sll $t1,$t0,2 # $t1 = i * 4
      add $t2,$a0,$t1 # $t2 =
                           &array[i]
                       #
      sw zero, 0(t_2) # array[i] = 0
      addi $t0,$t0,1 # i = i + 1
      slt $t3,$t0,$a1 # $t3 =
                       # (i < size)
      bne $t3,$zero,loop1 # if (...)
                          # goto loop1
```

Example: Clearing an Array (using a pointer)

```
clear2(int *array, int size) {
  int *p;
  for (p = &array[0]; p < &array[size];</pre>
       p = p + 1
    *p = 0:
}
       move t0, a0 \# p = \& array[0]
       sll $t1,$a1,2 # $t1 = size * 4
       add $t2,$a0,$t1 # $t2 =
                       # &array[size]
loop2: sw zero,0(t0) # Memory[p] = 0
       addi t0,t0,4 \ \ p = p + 4
       slt $t3,$t0,$t2 # $t3 =
                       #(p<&array[size])</pre>
       bne $t3,$zero,loop2 # if (...)
                            # goto loop2
```

Comparison of the Two...

move	\$t0,\$zero	# i = 0	move	\$t0, <mark>\$a0</mark>	# p = & array[0]
loop1:sll	\$t1,\$t0,2	# \$t1 = i * 4	s11	\$t1, <mark>\$a1</mark> ,2	# \$t1 = size * 4
add	\$t2,\$a0,\$t1	# \$t2 = &array[i]	add	\$t2,\$a0,\$t1	#\$t2 = &array[<mark>size</mark>]
SW	\$zero, 0(\$t2)	∦array[i] = 0	100p2:sw	\$zero,0(<mark>\$t0</mark>)	<pre># Memory[p] = 0</pre>
addi	\$t0,\$t0,1	# i = i + 1	addi	\$t0,\$t0, <mark>4</mark>	# p = p + 4
slt	\$t3,\$t0,\$a1	# \$t3 = (i < size)	slt	\$t3,\$t0, <mark>\$t2</mark>	<pre># \$t3=(p<&array[size])</pre>
bne	\$t3,\$zero,loo	p1# if () go to loop1	bne	\$t3,\$zero,lo	op2#if() go to loop2

- Version on the left must have the "multiply" and add inside the loop
- Memory pointer version on the right increments the pointer p directly.
- Moves the scaling shift and the array bound addition <u>outside</u> the loop
- It reduces instructions executed per iteration from 6 to 4.
- This is how a lot of compilers optimize code like this.

Arithmetic Overview 1

- Addition / subtraction
 - Carry out vs. Overflow remember the difference!

Examples in 8-bit adders:

- 0x24 + 0xB0 0xD4, C = 0, V = 0
- 0x7F + 0x66 *OxE5, C = 0, V = 1*
- 0x15 + 0xFB 0x10, C = 1, V = 0
- 0x87 + 0xAA 0x31, C = 1, V = 1

Dealing with Overflow in C/C++

- Some languages (e.g., C/C++, Java) ignore overflow
- What happens when you do: 0x87000000 + 0xAA000000 in C++? (i.e. -2,030,043,136 + -1,442,840,576?)
 - You get 822,083,584... discuss...
- In MIPS, you'd use addu, addui, subu instructions to not trigger overflow (this is what a C/C++ compiler would issue)
- Why?
 - Checking for overflow for every calculation can be demanding on CPU run time

Dealing with Overflow in Other Languages

- Other languages (e.g., Ada, Fortran older ones) require raising an exception
- In MIPS, you'd use MIPS add, addi, sub instructions
- What actually happens?
 - On overflow, an "exception handler" is invoked
 - PC is saved in exception program counter (EPC) register
 - Jump executed to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic Overview 2

- Multiplication
 - Left bit shifting by N bits $\clubsuit \rightarrow$ Multiplying by 2^{N}
 - Using mult / multu and mflo (or mfhi)
- Division
 - Right bit shifting by N bits $\leftarrow \rightarrow$ Integer divide by 2^{N}
 - Using div / divu (again, with mflo or mfhi)
 - No checking for overflow or divide-by-zero
 - Raises questions about floating point...
 - Will be coming up...

Multiplication in Computers: The Algorithm using a Decimal Example

 Let P be the partial product, M be the multiplicand, and N be the multiplier

• *i.e. P* eventually will be = M * N

```
Initially, P is 0

Loop:

If N is 0, then P = the result, exit Loop

Else, P += (the rightmost digit of N) times M

Shift N <u>right</u> once, and M <u>left</u> once

Repeat Loop
```

Example with Decimals

803 * 151 (which we expect to be 121,253)

Example with Decimals

803 * 151 (which we expect to be 121,253)

Ρ	Μ	Ν
0	803	151
803	8030	15
40953	80300	1
121253	803000	0

Multiplication in Computers: The Algorithm using a **Binary** Example

•...Even easier than the decimal example: Shown here for 32 bits

```
Initially, P is 0
Loop 32 times:
If N_{bit0} = 1, then P += M
Shift N <u>right</u> once, and M <u>left</u> once
```

Simple Example using 8 bits

- M = 0x04 = 0000 0100 (multiplicand) N = 0x05 = 0000 0101 (multiplier)
- P = 0
- $N_0 = 1 \rightarrow P += 0x04 = 0x04$, N = 0000 0010, M = 0000 1000
- $N_0 = 0 \rightarrow P = 0x04$ (unchanged), $N = 0000\ 0001$, $M = 0001\ 0000$
- $N_0 = 1 \rightarrow P += 0x10 = 0x14$, $N = 0000\ 0000$, $M = 0010\ 0000$
- Exit with **P** = **0x14** (correct answer, since 0x14 = 20)

Multiplication Hardware

Can be further optimized with added HW

Optimization of HW for Multiplication

- You can perform some steps in parallel: add/shift
- One cycle per partial-product addition is ok to do, if frequency of multiplications in program is low


```
Initially, R = N

Loop 32 times:

R = R - D

If R \ge 0, then

shift Q to left 1 bit

set LSB to 1 (that is, Q | 1)

Else

R = R + D

shift Q to left 1 bit

Shift D 1 bit to right,
```

Division Hardware

Optimization of HW for Division

 One cycle per partial-remainder subtraction

- Looks a lot like a multiplier!
- In fact, we can use the same hardware for both...

Floating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Usually follows some "normalized" form of scientific notation
- Example: -2.34 x 10⁶ (ok) *vs.* -234 x 10⁴ (not ok)
- In binary, the form is: ± 1.xxxxxxx_(base 2) x 2^{yyyy}
- Types float and double in C/C++
- More in next lecture...

YOUR TO-DOs for the Week

•Readings!

•Work on Lab 4!

