
Arithmetic for Computers 1
CS 154: Computer Architecture

Lecture #8
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Lab 4 underway…

• Syllabus (Schedule Section) has been updated

2/3/2020 Matni, CS154, Wi20 2

Midterm Exam (Wed. 2/12)

What’s on It?
• Everything we’ve covered in lecture from start to Monday, 2/10

What Else?
• Closed book – some notes (details to follow)
• Random seat assignments – come to class EARLY!

2/3/2020 Matni, CS154, Wi20 3

Lecture Outline

• MIPS Instructions: Arrays vs. Pointers

• Arithmetic
• Addition / Subtraction
• Multiplication / Division

2/3/2020 Matni, CS154, Wi20 4

Arrays vs. Pointers

• Array indexing involves
• Multiplying index by element size
• Adding to array base address

• Pointers correspond directly to memory addresses
• Can avoid indexing complexity

2/3/2020 Matni, CS154, Wi20 5

Example: Clearing an Array (the classic way)

2/3/2020 Matni, CS154, Wi20 6

Example: Clearing an Array (using a pointer)

2/3/2020 Matni, CS154, Wi20 7

Comparison of the Two…

2/3/2020 Matni, CS154, Wi20 8

• Version on the left must have the "multiply" and add inside the loop

• Memory pointer version on the right increments the pointer p directly.
• Moves the scaling shift and the array bound addition outside the loop
• It reduces instructions executed per iteration from 6 to 4.

• This is how a lot of compilers optimize code like this.

Arithmetic Overview 1

• Addition / subtraction

• Carry out vs. Overflow – remember the difference!

Examples in 8-bit adders:

• 0x24 + 0xB0

• 0x7F + 0x66

• 0x15 + 0xFB

• 0x87 + 0xAA

2/3/2020 Matni, CS154, Wi20 9

0xD4, C = 0, V = 0

0xE5, C = 0, V = 1

0x10, C = 1, V = 0

0x31, C = 1, V = 1

Dealing with Overflow in C/C++

• Some languages (e.g., C/C++, Java) ignore overflow
• What happens when you do:

0x87000000 + 0xAA000000 in C++?
(i.e. –2,030,043,136 + –1,442,840,576?)

• You get 822,083,584… discuss…

• In MIPS, you’d use
addu, addui, subu instructions to not trigger overflow

(this is what a C/C++ compiler would issue)

• Why?
• Checking for overflow for every calculation can be demanding on CPU run

time

2/3/2020 Matni, CS154, Wi20 10

Dealing with Overflow in Other Languages

• Other languages (e.g., Ada, Fortran – older ones) require raising an
exception

• In MIPS, you’d use MIPS add, addi, sub instructions

• What actually happens?
• On overflow, an “exception handler” is invoked
• PC is saved in exception program counter (EPC) register
• Jump executed to predefined handler address
• mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to

return after corrective action

2/3/2020 Matni, CS154, Wi20 11

Arithmetic Overview 2

• Multiplication
• Left bit shifting by N bits Multiplying by 2N

• Using mult / multu and mflo (or mfhi)

• Division
• Right bit shifting by N bits  Integer divide by 2N

• Using div / divu (again, with mflo or mfhi)
• No checking for overflow or divide-by-zero

• Raises questions about floating point...
• Will be coming up…

2/3/2020 Matni, CS154, Wi20 12

Multiplication in Computers:
The Algorithm using a Decimal Example

• Let P be the partial product,
M be the multiplicand,

and N be the multiplier
• i.e. P eventually will be = M * N

Initially, P is 0
Loop:

If N is 0, then P = the result, exit Loop
Else, P += (the rightmost digit of N) times M
Shift N right once, and M left once

Repeat Loop

2/3/2020 Matni, CS154, Wi20 13

Example with Decimals
803 * 151 (which we expect to be 121,253)

P M N

0 803 151

803
803*1

8030 15

40953
803+8030*5

80300 1

121253
40953+80300*1

803000 0

2/3/2020 Matni, CS154, Wi20 14

1. N is not 0

2. P += (rightmost digit of N[1]) * M[803]

Shift N right once, M left once
N is not 0

3. P += (rightmost digit of N[5]) * M[8030]

Shift N right once, M left once
N is not 0

4. P += (rightmost digit of N[1]) * M[80300]

Shift N right once, M left once
N IS 0 ; END

Example with Decimals
803 * 151 (which we expect to be 121,253)

P M N

0 803 151

803 8030 15

40953 80300 1

121253 803000 0

2/3/2020 Matni, CS154, Wi20 15

1. N is not 0

2. P += (rightmost digit of N[1]) * M[803]

Shift N right once, M left once
N is not 0

3. P += (rightmost digit of N[5]) * M[8030]

Shift N right once, M left once
N is not 0

4. P += (rightmost digit of N[1]) * M[80300]

Shift N right once, M left once
N IS 0 ; END

Multiplication in Computers:
The Algorithm using a Binary Example

• …Even easier than the decimal example:
Shown here for 32 bits

Initially, P is 0
Loop 32 times:

If Nbit0 = 1, then P += M
Shift N right once, and M left once

2/3/2020 Matni, CS154, Wi20 16

Simple Example using 8 bits

M = 0x04 = 0000 0100 (multiplicand)
N = 0x05 = 0000 0101 (multiplier)

• P = 0
• N0 = 1  P += 0x04 = 0x04, N = 0000 0010, M = 0000 1000
• N0 = 0  P = 0x04 (unchanged), N = 0000 0001, M = 0001 0000
• N0 = 1  P += 0x10 = 0x14, N = 0000 0000, M = 0010 0000
• Exit with P = 0x14 (correct answer, since 0x14 = 20)

2/3/2020 Matni, CS154, Wi20 17

Multiplication Hardware

2/3/2020 Matni, CS154, Wi20 18

Can be further optimized with added HW

Optimization of HW for Multiplication

• You can perform some steps
in parallel: add/shift

• One cycle per
partial-product addition is
ok to do, if frequency of
multiplications in program
is low

2/3/2020 Matni, CS154, Wi20 19

Division in Computers: The Algorithm

• Dividend (N) ÷ Divisor (D)= Quotient, Remainder

Initially, R = N
Loop 32 times:

R = R – D
If R ≥ 0, then

shift Q to left 1 bit
set LSB to 1 (that is, Q | 1)

Else
R = R + D
shift Q to left 1 bit

Shift D 1 bit to right,

2/3/2020 Matni, CS154, Wi20 20

Division Hardware

2/3/2020 Matni, CS154, Wi20 21

Optimization of HW for Division

• One cycle per
partial-remainder
subtraction

• Looks a lot like a multiplier!
• In fact, we can use the same hardware for both…

2/3/2020 Matni, CS154, Wi20 22

Floating Point

• Representation for non-integral numbers
• Including very small and very large numbers

• Usually follows some ”normalized” form of scientific notation
• Example: –2.34 x 106 (ok) vs. –234 x 104 (not ok)

• In binary, the form is: ± 1.xxxxxxx(base 2) x 2yyyy

• Types float and double in C/C++

• More in next lecture…
2/3/2020 Matni, CS154, Wi20 23

YOUR TO-DOs for the Week

•Readings!

•Work on Lab 4!

2/3/2020 Matni, CS154, Wi20 24

2/3/2020 Matni, CS154, Wi20 25

	Arithmetic for Computers 1
	Administrative
	Midterm Exam (Wed. 2/12)
	Lecture Outline
	Arrays vs. Pointers
	Example: Clearing an Array (the classic way)
	Example: Clearing an Array (using a pointer)
	Comparison of the Two…
	Arithmetic Overview 1
	Dealing with Overflow in C/C++
	Dealing with Overflow in Other Languages
	Arithmetic Overview 2
	Multiplication in Computers:�The Algorithm using a Decimal Example
	Example with Decimals�803 * 151 (which we expect to be 121,253)
	Example with Decimals�803 * 151 (which we expect to be 121,253)
	Multiplication in Computers:�The Algorithm using a Binary Example
	Simple Example using 8 bits
	Multiplication Hardware
	Optimization of HW for Multiplication
	Division in Computers: The Algorithm
	Division Hardware
	Optimization of HW for Division
	Floating Point
	YOUR TO-DOs for the Week
	Slide Number 25

