Arithmetic for Computers 1

CS 154: Computer Architecture
Lecture \#8
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Lab 4 underway...
- Syllabus (Schedule Section) has been updated

Midterm Exam (Wed. 2/12)

What's on It?

- Everything we've covered in lecture from start to Monday, 2/10

What Else?

- Closed book - some notes (details to follow)
- Random seat assignments - come to class EARLY!

Lecture Outline

- MIPS Instructions: Arrays vs. Pointers
- Arithmetic
- Addition / Subtraction
- Multiplication / Division

Arrays vs. Pointers

- Array indexing involves
- Multiplying index by element size
- Adding to array base address
- Pointers correspond directly to memory addresses
- Can avoid indexing complexity

Example: Clearing an Array (the classic way)

```
clear1(int array[], int size) {
    int i;
    for (i = 0; i < size; i += 1)
        array[i] = 0;
}
    move $t0,$zero # i = 0
1oop1: s11 $t1,$t0,2 # $t1 = i * 4
    add $t2,$a0,$t1 # $t2 =
                            # &array[i]
    sw $zero, O($t2) # array[i] = 0
    addi $t0,$t0,1 # i = i + 1
    slt $t3,$t0,$a1 # $t3 =
    # (i < size)
    bne $t3,$zero,loop1 # if (...)
        # goto loop1
```


Example: Clearing an Array (using a pointer)

$$
\begin{aligned}
& \text { clear2(int *array, int size) \{ } \\
& \text { int *p; } \\
& \text { for (} p \text { = \&array[0]; p < \&array[size]; } \\
& p=p+1) \\
& \text { *p }=0 \text {; } \\
& \text { \} } \\
& \text { move \$t0,\$a0 \# p = \& array[0] } \\
& \text { s11 \$t1,\$a1,2 \# \$t1 = size * } 4 \\
& \text { add \$t2,\$a0,\$t1 \# \$t2 = } \\
& \text { \# \&array[size] } \\
& \text { 1oop2: sw \$zero,0(\$t0) \# Memory[p] = 0 } \\
& \text { addi \$t0,\$t0,4 \# } \mathrm{p}=\mathrm{p}+4 \\
& \text { s1t \$t3,\$t0,\$t2 \# \$t3 = } \\
& \text { \#(p<\&array[size]) } \\
& \text { bne \$t3,\$zero,loop2 \# if (...) } \\
& \text { \# goto loop2 }
\end{aligned}
$$

Comparison of the Two．．．

move	\＄t0，\＄zero	非 $\mathrm{i}=0$	move	\＄t0，\＄a0	\＃ $\mathrm{p}=$ \＆array［0］
100p1：s11	\＄t1，\＄t0，2	\＃\＄t1＝i＊ 4	s11	\＄t1，\＄a1．2	\＃\＄t1＝size＊ 4
add	\＄t2，\＄a0，\＄t1	非\＄t2＝\＆array［i］	add	\＄t2，\＄a0，\＄t1	\＃\＄t2＝\＆array［size］
sw	\＄zero，0（\＄t2）	\＃ array $\left.^{\text {a }} \mathrm{i}\right]=0$	1oop2：sw	\＄zero，0（\＄t0）	非Memory［p］$=0$
addi	\＄t0，\＄t0，1	非 $\mathrm{i}=\mathrm{j}+1$	addi	\＄t0，\＄t0，4	\＃$p=p+4$
slt	\＄t3，\＄t0，\＄a1	\＃\＄t3＝（i＜size）	slt	\＄t3，\＄t0，\＄t2	\＃\＄t3＝（p＜\＆array［size］）
bne	\＄t3，\＄zero，100p	1非 if（）go to loop1	bne	\＄t3，\＄zero，100	op2非 if（）go to 10op2

－Version on the left must have the＂multiply＂and add inside the loop
－Memory pointer version on the right increments the pointer p directly．
－Moves the scaling shift and the array bound addition outside the loop
－It reduces instructions executed per iteration from 6 to 4.
－This is how a lot of compilers optimize code like this．

Arithmetic Overview 1

- Addition / subtraction
- Carry out vs. Overflow - remember the difference!

Examples in 8-bit adders:

- $0 \times 24+0 x B 0 \quad 0 x D 4, C=0, V=0$
- 0x7F + 0x66 OxE5, C = 0, V = 1
- $0 \times 15+0 \times F B \quad 0 \times 10, C=1, V=0$
- $0 \times 87+0 x A A \quad 0 x 31, C=1, V=1$

Dealing with Overflow in C/C++

- Some languages (e.g., C/C++, Java) ignore overflow
- What happens when you do:

$$
\begin{aligned}
& 0 \times 87000000+0 x A A 000000 \text { in } \mathrm{C}++ \text { ? } \\
& \text { (i.e. }-2,030,043,136+-1,442,840,576 \text { ?) }
\end{aligned}
$$

- You get 822,083,584... discuss...
- In MIPS, you'd use addu, addui, subu instructions to not trigger overflow (this is what a C/C++ compiler would issue)
- Why?
- Checking for overflow for every calculation can be demanding on CPU run time

Dealing with Overflow in Other Languages

- Other languages (e.g., Ada, Fortran - older ones) require raising an exception
- In MIPS, you'd use MIPS add, addi, sub instructions
- What actually happens?
- On overflow, an "exception handler" is invoked
- PC is saved in exception program counter (EPC) register
- Jump executed to predefined handler address
- mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic Overview 2

- Multiplication
- Left bit shifting by N bits \leftrightarrows Multiplying by 2^{N}
- Using mult / multu and mflo (or mfhi)
- Division
- Right bit shifting by N bits \leftrightarrows Integer divide by 2^{N}
- Using div / divu (again, with mflo or mfhi)
- No checking for overflow or divide-by-zero
- Raises questions about floating point...
- Will be coming up...

Multiplication in Computers:

The Algorithm using a Decimal Example

- Let \mathbf{P} be the partial product, M be the multiplicand,
and $\quad \mathbf{N}$ be the multiplier
- i.e. P eventually will be $=M^{*} N$

Initially, P is 0
Loop:
If N is 0 , then $\mathrm{P}=$ the result, exit Loop Else, $\mathrm{P}+=$ (the rightmost digit of N) times M Shift N right once, and M left once
Repeat Loop

Example with Decimals
 803 * 151 (which we expect to be 121,253)

P	M	N	
0	803	151	1. N is not 0
			2. $\mathrm{P}+=$ (rightmost digit of $\left.\mathrm{N}_{[1]}\right)$ * $\mathrm{M}_{[803]}$ Shift N right once, M left once N is not 0 3. $\mathrm{P}+=$ (rightmost digit of $\mathrm{N}_{[5]}$) * $\mathrm{M}_{[8030]}$ Shift N right once, M left once N is not 0 4. $\mathrm{P}+=\left(\right.$ rightmost digit of $\left.\mathrm{N}_{[1]}\right) * \mathrm{M}_{[80300]}$ Shift N right once, M left once N IS 0 ; END

Example with Decimals
 803 * 151 (which we expect to be 121,253)

P	M	N	1. N is not 0

Multiplication in Computers:
The Algorithm using a Binary Example
-...Even easier than the decimal example: Shown here for 32 bits

Initially, P is 0
 Loop 32 times:
 If $\mathrm{N}_{\text {bit0 }}=1$, then $\mathrm{P}+=\mathrm{M}$
 Shift N right once, and M left once

Simple Example using 8 bits

$M=0 \times 04=00000100$
$\mathrm{N}=0 \times 05=00000101$
(multiplicand)
(multiplier)

- $P=0$
- $N_{0}=1 \rightarrow P+=0 \times 04=0 x 04, \quad N=00000010, M=00001000$
- $N_{0}=0 \rightarrow P=0 x 04$ (unchanged), $N=00000001, M=00010000$
- $\mathrm{N}_{0}=1 \rightarrow \mathrm{P}+=0 \times 10=0 \times 14, \quad \mathrm{~N}=00000000, \mathrm{M}=00100000$
- Exit with $\mathbf{P}=0 \times 14$ (correct answer, since $0 \times 14=20$)

Multiplication Hardware

Can be further optimized with added HW

Optimization of HW for Multiplication

- You can perform some steps in parallel: add/shift
- One cycle per partial-product addition is ok to do, if frequency of multiplications in program
 is low

quotient
 dividend

Division in Computers: The Algorithm

- Dividend (N) \div Divisor (D)= Quotient, Remainder

```
Initially, R = N
Loop }32\mathrm{ times:
    R=R-D
    If R\geq0, then
        shift Q to left 1 bit
        set LSB to 1 (that is, Q | 1)
    Else
        R=R + D
        shift Q to left 1 bit
    Shift D 1 bit to right,
```


Division Hardware

Optimization of HW for Division

- One cycle per partial-remainder subtraction

- Looks a lot like a multiplier!
- In fact, we can use the same hardware for both...

Floating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Usually follows some "normalized" form of scientific notation
- Example: -2.34×10^{6} (ok) vs. -234×10^{4} (not ok)
- In binary, the form is: $\pm \mathbf{1 . x x x x x x x}_{(\text {base } 2)} \mathbf{x} \mathbf{2}^{\text {yyyy }}$
- Types float and double in C/C++
- More in next lecture...

YOUR TO-DOs for the Week

-Readings!
-Work on Lab 4!

