Arithmetic for Computers 1

CS 154: Computer Architecture
Lecture #8
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

e Lab 4 underway...

e Syllabus (Schedule Section) has been updated

2/3/2020 Matni, CS154 , Wi20

Midterm Exam (Wed. 2/12)

What’s on It?
e Everything we’ve covered in lecture from start to Monday, 2/10

What Else?
e Closed book — some notes (details to follow)
e Random seat assignments — come to class EARLY!

2/3/2020 Matni, CS154, Wi20 3

Lecture Outline

* MIPS Instructions: Arrays vs. Pointers

e Arithmetic
» Addition / Subtraction
e Multiplication / Division

2/3/2020 Matni, CS154, Wi20

Arrays vs. Pointers

e Array indexing involves
* Multiplying index by element size
* Adding to array base address

* Pointers correspond directly to memory addresses
e Can avoid indexing complexity

2/3/2020 Matni, CS154, Wi20

Example: Clearing an Array (the classic way)

clearl(int array[], int size) {
int 1;
for (1 =0; 1 < size; 1 += 1)
array[i1] = 0;

move $t0, $zero
Toopl: s11 $t1,%$t0,2

;
$tl =1 * 4
add $t2,%a0, $tl $

t2 =
&array[i]
sw $zero, 0($t2) # array[i] =0
addi $t0,%$t0,1 # 1 =1 + 1
slt $t3,%t0,%al # $t3 =

(1 < size)

bne $t3,%$zero,Toopl # if (.)
2020 # goto loopl

#
#
#
#

Example: Clearing an Array (using a pointer)

clear2(int *array, int size) {

int *p;
for (p = &array[0]; p < &array[size];
p=p+ 1)
*p = 0;
¥
move $tO,
s11 $t1, 2 # $tl = * 4

add $t2,%a0,%t1 # $t2 =
&array[]

sw $zero,0() # =0
addi $t0,$t0,4 #
sTt $t3, $t0, # $t3 =

#()

bne $t3,%zero,loop2 # if (..)
2/3/2020 # goto 100[32

Comparison of the Two...

move $t0,$zero #1i=0 move $t0,%a0 #p=2=%&array[0]
loopl:sll $t1,%t0,2 # $tl1 =1 *4 s11 $t1,%al,2 # $t1 =size * 4

add $t2,%a0,$tl # $t2 = &array[i] add $t2,%$a0,$t1 # $t2 = &array[size]

SW $zero, 0($t2) # array[i]l =0 loop2: sw $zero,0($t0) # Memory[p] =0

addi $t0,$t0,1 #i=1+1 addi $t0,$t0,4 #p=p+4

st $t3,$t0, $al # $t3 = (1 < size) st $t3,$t0,$t2 # $t3—=(p<&array[size])

bne $t3,%$zero,loopl# if () go to loopl bne $t3,$zero,loop2# if () go to loop2

e Version on the left must have the "multiply" and add inside the loop
e Memory pointer version on the right increments the pointer p directly.
 Moves the scaling shift and the array bound addition outside the loop

e It reduces instructions executed per iteration from 6 to 4.

e This is how a lot of compilers optimize code like this.

2/3/2020 Matni, CS154, Wi20 8

Arithmetic Overview 1

e Addition / subtraction

e Carry out vs. Overflow — remember the difference!

Examples in 8-bit adders:

e 0x24 + OxBO 0xD4,C=0, V=0
* Ox7F + Ox66 OxE5, C=0,V-=1
e Ox15 + OxFB 0x10,C=1,V=0

*Ox87+0xAA 0x31,C=1, V=1

2/3/2020 Matni, CS154, Wi20

Dealing with Overflow in C/C++

e Some languages (e.g., C/C++, Java) ignore overflow

 What happens when you do:
0x87000000 + OxAAO000000 in C++?

(i.e. —2,030,043,136 +-1,442,840,5767)

* You get 822,083,584... discuss...

e In MIPS, you’d use
addu, addui, subu instructions to not trigger overflow

(this is what a C/C++ compiler would issue)

e Why?

e Checking for overflow for every calculation can be demanding on CPU run
time

2/3/2020 Matni, CS154, Wi20 10

Dealing with Overflow in Other Languages

e Other languages (e.g., Ada, Fortran — older ones) require raising an
exception

e In MIPS, you’d use MIPS add, addi, sub instructions

 What actually happens?
e On overflow, an “exception handler” is invoked
e PCis saved in exception program counter (EPC) register
e Jump executed to predefined handler address

 mfcO (move from coprocessor reg) instruction can retrieve EPC value, to
return after corrective action

2/3/2020 Matni, CS154, Wi20 11

Arithmetic Overview 2

* Multiplication
o Left bit shifting by N bits €= Multiplying by 2N
e Using mult /multu and mflo (or mfhi)

* Division
e Right bit shifting by N bits €= Integer divide by 2N
e Using div / divu (again, with mflo or mfhi)
* No checking for overflow or divide-by-zero

 Raises questions about floating point...
e Will be coming up...

2/3/2020 Matni, CS154, Wi20

12

Multiplication in Computers:
The Algorithm using a Decimal Example

e Let P be the partial product,
M be the multiplicand,
and N be the multiplier
e j.e. P eventually will be =M * N

/Initially, P is 0 N
Loop:
If N is O, then P = the result, exit Loop
Else, P += (the rightmost digit of N) times M
Shift N right once, and M left once
_Repeat Loop -

2/3/2020 Matni, CS154, Wi20

13

Example with Decimals
803 * 151 (which we expect to be 121,253)

0 3803 151 1. NisnotO

2. P += (rightmost digit of N[1]) * M(so03]
Shift N right once, M left once
NisnotO

3. P += (rightmost digit of Nis1) * Miso30]
Shift N right once, M left once
NisnotO

4. P += (rightmost digit of Ni11) * Miso3o0]
Shift N right once, M left once
NISO; END

2/3/2020 Matni, CS154, Wi20 14

Example with Decimals
803 * 151 (which we expect to be 121,253)

0 803 151 1. NisnotO
2. P += (rightmost digit of N[1]) * M(so03]
803 8030 15 Shift N right once, M left once
NisnotO

40953 80300 1 3. P += (rightmost digit of Nis1) * Miso30]
Shift N right once, M left once

NisnotO

121253 3803000 O 4. P += (rightmost digit of Ni11) * Miso3o0]
Shift N right once, M left once
NISO; END

2/3/2020 Matni, CS154, Wi20 15

Multiplication in Computers:

The Algorithm using a Binary Example

e ...Even easier than the decimal example:
Shown here for 32 bits

Initially, P is 0 O
LLoop 32 times:

If N;io =1, thenP+=M

Shift N right once, and M left once

" /

2/3/2020 Matni, CS154 , Wi20

Simple Example using 8 bits

M = 0x04 = 0000 0100 (multiplicand)
N = 0x05 =0000 0101 (multiplier)

eP=0

*N,=1=> P +=0x04 = 0x04, N = 0000 0010, M =0000 1000
* N, =0 =2 P =0x04 (unchanged), N = 0000 0001, M = 0001 0000
*N,=1=> P +=0x10 = 0x14, N = 0000 0000, M =0010 0000

e Exit with P = 0x14 (correct answer, since 0x14 = 20)

2/3/2020 Matni, CS154, Wi20 17

Multiplication Hardware

Start

A

Multiplier0 = 1 1. Test

Multiplier0

Multiplier0 = 0

Y

1a. Add multiplicand to product and
place the result in Product register

Y \i
| 2. Shift the Multiplicand register left 1 bit |

Y
| 3. Shiftthe Mutipier register right 1 bit |

No: < 32 repetitions

e Em—

Multiplicand

Shift left |-<—

164 bits

N

64-bit ALU

_b..

Multiplier

Shift right -e—
32 bits

Product

Write

Control test 5 '

2/3/2020

64 bits

Initially O

Can be further optimized with added HW

Matni, CS154, Wi20

18

Optimization of HW for Multiplication

 You can perform some steps
in parallel: add/shift

* One cycle per
partial-product addition is
ok to do, if frequency of
multiplications in program
is low

2/3/2020

Y

Multiplicand

132 bits

N/

32-bit ALU /¥

—

Product Shift rlght Control
Write test
64 bits

Matni, CS154, Wi20 19

\

1001

o . . 1000)1001010
Division in Computers: The Algorithm ey~ 2000

1810'

-1000

e Dividend (N) + Divisor (D)= Quotient, Remainder [remainder | ——— 10

/Initially, R = N I

Loop 32 times:
R=R-D
If R > 0, then
shift Q to left 1 bit
set LSBto 1 (thatis, Q| 1)
Else
R=R+D
shift Q to left 1 bit

\ Shift D 1 bit to right, /

2/3/2020 Matni, CS154, Wi20 20

Division Hardware

1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder =0

Y

Test Remainder

Remainder < 0

Y

Initially divisor
in left half

 §

—
Divisor
Shift right
64 bits

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to 0

64-bit ALU

Y

A

3. Shift the Divisor register right 1 bit

No: < 33 repetitions

Remainder

Write

64 bits

SR

Quotient
Shift left

32 bits

Control 1\

test

Yes: 33 repetitions

Initially dividend

Optimization of HW for Division

Divisor

* One cycle per 132 bits
partial-remainder 1 L
subtraction

32-bit ALU

-

. Shift right
Remainder Shift left
Write

64 bits

e Looks a lot like a multiplier!
* |n fact, we can use the same hardware for both...

2/3/2020 Matni, CS154, Wi20

22

Floating Point

e Representation for non-integral numbers

* Including very small and very large numbers

e Usually follows some “normalized” form of scientific notation
e Example: —-2.34x10° (ok) vs. —234x10* (not ok)

* In binary, the form is: £ 100X 550 2) X 2YYYY
e Types float and double in C/C++

* More in next lecture...

2/3/2020 Matni, CS154, Wi20 23

YOUR TO-DOs for the Week

*Readings!

*\Work on Lab 4!

2/3/2020 Matni, CS154 , Wi20

2/3/2020

</LECTURE>

Matni, CS154, Wi20

25

	Arithmetic for Computers 1
	Administrative
	Midterm Exam (Wed. 2/12)
	Lecture Outline
	Arrays vs. Pointers
	Example: Clearing an Array (the classic way)
	Example: Clearing an Array (using a pointer)
	Comparison of the Two…
	Arithmetic Overview 1
	Dealing with Overflow in C/C++
	Dealing with Overflow in Other Languages
	Arithmetic Overview 2
	Multiplication in Computers:�The Algorithm using a Decimal Example
	Example with Decimals�803 * 151 (which we expect to be 121,253)
	Example with Decimals�803 * 151 (which we expect to be 121,253)
	Multiplication in Computers:�The Algorithm using a Binary Example
	Simple Example using 8 bits
	Multiplication Hardware
	Optimization of HW for Multiplication
	Division in Computers: The Algorithm
	Division Hardware
	Optimization of HW for Division
	Floating Point
	YOUR TO-DOs for the Week
	Slide Number 25

