
Arithmetic for Computers 2:
Floating Point Numbers

CS 154: Computer Architecture
Lecture #9

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Lab 4 due today!

• Lab 5 out soon

• Syllabus (Schedule Section) has been updated

2/5/20 Matni, CS154, Wi20 2

Midterm Exam (Wed. 2/12)

What’s on It?
• Everything we’ve done so far from start to Monday, 2/10

What Should I Bring?
• Your pencil(s), eraser, MIPS Reference Card (on 1 page)
• You can bring 1 sheet of hand-written notes (turn it in with exam). 2 sides ok.

What Else Should I Do?
• IMPORTANT: Come to the classroom 5-10 minutes EARLY
• If you are late, I may not let you take the exam
• IMPORTANT: Use the bathroom before the exam – once inside, you cannot leave
• Random seat assignments
• Bring your UCSB ID

2/5/20 Matni, CS154, Wi20 3

Lecture Outline

•Floating Point Numbers Representations

• IEEE 754 F-P Standard

•Arithmetic in F-P

• Instructions for F-P

•Hardware implementations

2/5/20 Matni, CS154, Wi20 4

Floating Point

•Representation for non-integral numbers
• Including very small and very large numbers

•Usually follows some ”normalized” form
of scientific notation

2/5/20 Matni, CS154, Wi20 5

Floating Point Numbers in CPUs

We need 3 pieces of information to produce a
binary floating point number:

+/- N x 2E

2/5/20 Matni, CS111, Sp19 6

The sign of the
number (positive

or negative)

The
exponent of
the number

The mantissa
(aka significand) of

the number

Representation in MIPS (Single Precision)

• The actual form is: (-1)S x (1 + Fraction) x 2Exponent - Bias

• Called the IEEE 754 F-P Standard (more on this coming up)

• MIPS design for “single-precision” has:
8 bits for exponent and 23 bits for fraction

• Gives a range from 2.0 x 10-38 to 2.0 x 1038 – quite large!

• Overflow can occur: here it means that the exponent is too large to be
represented in the exponent field.

• If a negative exponent is too large, then we get underflow.

2/5/20 Matni, CS154, Wi20 7

Double Precision Floating Points

• Single Precision is float in C/C++

• Double Precision is double in C/C++

• 64 bits (2 words) instead of 32 bits

• 11 bits for exponent (instead of 8)

• 52 bits for fraction (instead of 23)

2/5/20 Matni, CS154, Wi20 8

Gives a wider range and
greater precision than

single-precision

Range is: 2.0 x 10-308 to 2.0 x 10308

IEEE 754 Floating-Point
Standard
• Includes single and double-precision definitions (since 1980s)

• Very widespread in almost all CPUs today

• S = 0 è positive S = 1 è negative

• The ”1” in “1 + Fraction” is implicit

• The ”Bias” is 127 for single-precision and 1023 for double-precision

Examples with single-precision:

2/5/20 Matni, CS154, Wi20 9

S = 0, E = 0x82, F = 0 is:

(+1) x (1 + 0) x 2 (130-127)

= 1 x 23 = 8

S = 0, E = 0x83, F = 0x600000 is:

(+1) x (1 + 0.11) x 2 (131-127)

= 1.11 x 24 = 11100 = 28

Useful website: https://www.h-schmidt.net/FloatConverter/IEEE754.html

https://www.h-schmidt.net/FloatConverter/IEEE754.html

More Examples!

• Hex word for single-precision F-P is: 0x3FA00000
• So:

0011 1111 1010 0000 … 0000
S = 0 E = 0x7F = 127 F = 010…0

• So:
Number = (+1) x (1 + 0.01) x 2(127 – 127) = 1.01 (bin)

= 1 + 1 x 2-2 = 1.25

2/5/20 Matni, CS154, Wi20 10

Yet More Examples!!

• Hex word for single-precision F-P is: 0xBF300000
• So:

1011 1111 0011 0000 … 0000
S = 1 E = 0x7E = 126 F = 011…0

• So:
Number = (-1) x (1 + 0.011) x 2(126 – 127) = 1.011 (bin)

= -(1 + (1 x 2-2) + (1 x 2-3)) x 2-1

= -(1 + 0.25 + 0.125) x 0.5
= -0.6875

2/5/20 Matni, CS154, Wi20 11

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625
2-5 = 0.03125

Even More Examples!!!

• What is the single-precision word (in hex) of the F-P number 29.125?
• Ok, here we go:

I am reminded that 0.125 = 2-3

And, I know that 29 in binary is: 11101
So 29.125(10) = 11101.001(2) = 1.1101001 x 24

This is a positive number, so S = 0
F = 1101001000…0 (23 bits in all)
E = 4 + 127 = 131 = 10000011

• So:
Number in bin = 0 10000011 1101001000…0

or 0100 0001 1110 1001 0…0
= 0x41E90000

2/5/20 Matni, CS154, Wi20 12

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125
2-4 = 0.0625
2-5 = 0.03125

Special Exponent Values

Consider Single-Precision Numbers:
• Exponents 0x00 and 0xFF are reserved

• Smallest exponent is 1 è Actual exponent = 1 - 127 = -126
• Smallest fraction is 0
• So, I get ±1.0 x 2-126 ≅ ±1.2 x 10–38

• Largest exponent is 0xFE = 254 è Actual exp. = 127
• Largest fraction is 111…11 , which approaches 1
• So, I get ±2.0 x 2+127 ≅ ±3.4 x 10+38

2/5/20 Matni, CS154, Wi20 13

Special IEEE 754 Values

• IEEE 754 allows for special symbols to represent “unusual events”

•When S = 0, E = 0xFF, F = 0,
IEEE calls the number “inf” (i.e. infinity)

• “-inf” is when S = 1, E = 0xFF, F = 0
• These are to optionally allow programmers to divide by 0.

• Allows for the result of invalid operations
These are called “Not a Number” or “NaN”

• Example: 0/0 , inf – inf, etc…

2/5/20 Matni, CS154, Wi20 14

Floating-Point Addition

Consider a 4-digit decimal example: 9.999 x 101 + 1.610 x 10–1

1. Align decimal points
• Shift number with smaller exponent
• 9.999 x 101 + 0.016 x 101

2. Add significands
• 10.015 x 101

3. Normalize result & check for over/underflow
• 1.0015 x 102

4. Round and renormalize if necessary (what? why? Be patient…)

• 1.002 x 102

2/5/20 Matni, CS154, Wi20 15

Floating-Point Addition

Consider a 4-digit binary example: 1.000 x 2-1 + -1.110 x 2–2

1. Align decimal points
• Shift number with smaller exponent
• 1.000 x 2-1 + -0.111 x 2-1

2. Add significands
• 0.001 x 2-1

3. Normalize result & check for over/underflow
• 1.000 x 2-4

4. Round and renormalize if necessary
• 1.000 x 2-4 = 0.0625

2/5/20 Matni, CS154, Wi20 16

Re: Rounding in Binary F-P

• Can we create ANY floating point number in binary?

• What about 0.3333… (i.e. 1/3)?
• In binary, 1/10 is the infinitely repeating fraction

0.0001100110011001100110011001100110011001100...

• Since we cannot create ALL F-P numbers in binary, rounding
(i.e. approximating) is necessary

• Many users are not aware of the approximation because of the
way values are displayed
• The actual stored value is the nearest representable binary fraction

2/5/20 Matni, CS154, Wi20 17

C++ Program to Illustrate Rounding in Binary F-P

#include <iostream>
#include <iomanip>
int main()
{

// Try running the program without the next 2 lines
// as a comparison. Or change the precision number around.
std::cout << std::setprecision(30);
std::cout << std::fixed;

float a = 1.0/3;
double b = 1.0/3;
std::cout << a << "\n" << b << "\n";

float x = 1.0/10;
double y = 1.0/10;
std::cout << x << "\n" << y;

}

2/5/20 Matni, CS154, Wi20 18

Floating-Point Adder Hardware

•Much more complex than integer adder
• Remember the 4 steps from a couple of slides ago?...

• Doing it in one clock cycle would take too long
• Would force a slower clock on the system
• How much we can do in 1 clock cycle is a matter for later

discussion

• FP adder usually takes several cycles
• Can be pipelined for more efficient operation

2/5/20 Matni, CS154, Wi20 19

2/5/20 Matni, CS154, Wi20 20

FP Adder
Hardware

FP Other Arithmetic Hardware

• FP multiplier is of similar complexity to FP adder
• But uses a multiplier for significands instead of an adder

• FP arithmetic hardware (incl. addition) is usually in a
co-processor & does:
• Addition, subtraction, multiplication, division,

reciprocal, square-root
• FP çè integer conversion

• Operations usually takes several cycles
• Can be pipelined

2/5/20 Matni, CS154, Wi20 21

MIPS FP Instructions

Single-Precision Double-Precision
Addition add.s add.d
Subtraction sub.s sub.d
Multiplication mul.s mul.d
Division div.s div.d
Comparisons

Where xx can be
Example: c.eq.s

c.xx.s
eq, neq, lt, gt,

c.xx.d
le, ge

Load lwc1 lwd1
Store swc1 swd1

2/5/20 Matni, CS154, Wi20 22

Also, F-P branch, true (bc1t) and branch, false (bc1f)

MIPS FP Instructions

• FP instructions operate only on FP registers

• Programs generally don’t do integer ops on FP data,
or vice versa

•More registers with minimal code-size impact

2/5/20 Matni, CS154, Wi20 23

The Floating Point Registers

•MIPS has 32 separate registers for floating point:
• $f0, $f1, etc…

• Paired for double-precision
• $f0/$f1, $f2/$f3, etc…

• Example MIPS assembly code:
lwc1 $f4, 0($sp) # Load 32b F.P. number into F4
lwc1 $f6, 4($sp) # Load 32b F.P. number into F6
add.s $f2, $f4, $f6 # F2 = F4 + F6 single precision
swc1 $f2, 8($sp) # Store 32b F.P. number from F2

2/5/20 Matni, CS154, Wi20 24

Example Code

C++ code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0)); }

Assume:
fahr in $f12, result in $f0, constants in global memory space (i.e. defined in .data)

Compiled MIPS code:
f2c: lwc1 $f16, const5

lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

2/5/20 Matni, CS154, Wi20 25

YOUR TO-DOs for the Week

•Readings!

•Work on Lab 5!

•Start studying for the midterm!

2/5/20 Matni, CS154, Wi20 26

2/5/20 Matni, CS154, Wi20 27

