

Arithmetic for Computers 2: Floating Point Numbers

CS 154: Computer Architecture Lecture #9 Winter 2020

Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative

- Lab 4 due today!
- Lab 5 out soon

• Syllabus (Schedule Section) has been updated

Midterm Exam (Wed. 2/12)

What's on It?

• Everything we've done so far from start to Monday, 2/10

What Should I Bring?

- Your pencil(s), eraser, MIPS Reference Card (on <u>1</u> page)
- You can bring <u>1</u> sheet of hand-written notes (turn it in with exam). 2 sides ok.

What Else Should I Do?

- IMPORTANT: Come to the classroom 5-10 minutes EARLY
- If you are late, I may not let you take the exam
- **<u>IMPORTANT</u>**: Use the bathroom before the exam once inside, you cannot leave
- Random seat assignments
- Bring your UCSB ID

Lecture Outline

- Floating Point Numbers Representations
- IEEE 754 F-P Standard
- Arithmetic in F-P
- Instructions for F-P
- Hardware implementations

Floating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Usually follows some "normalized" form of scientific notation

Floating Point Numbers in CPUs

We need 3 pieces of information to produce a binary floating point number:

Representation in MIPS (Single Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	s exponent fraction																														
1 bit	8 bits																	23	3 bit	s											

- The actual form is: (-1)^S x (1 + Fraction) x 2^{Exponent Bias}
 - Called the IEEE 754 F-P Standard (more on this coming up)
- MIPS design for "single-precision" has: 8 bits for exponent and 23 bits for fraction
- Gives a range from 2.0 x 10^{-38} to 2.0 x 10^{38} quite large!
- **Overflow** can occur: here it means that the exponent is too large to be represented in the exponent field.
- If a *negative* exponent is too large, then we get **underflow**.

Double Precision Floating Points

31	30	30 29 28 27 26 25 24 23 22 21 20 19							18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	exponent																		tion				_				
1 bi										20 bits																	
	fraction (continued)																										

32 bits

- Single Precision is **float** in C/C++
- Double Precision is **double** in C/C++
- 64 bits (2 words) instead of 32 bits
- 11 bits for exponent (instead of 8)
- 52 bits for fraction (instead of 23)

Gives a wider range and greater precision than single-precision

Range is: 2.0 x 10⁻³⁰⁸ to 2.0 x 10³⁰⁸

IEEE 754 Floating-Point Standard

	single: 8 bits double: 11 bit	single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- Includes single and double-precision definitions (since 1980s)
 - Very widespread in almost all CPUs today
- S = 0 \rightarrow positive S = 1 \rightarrow negative
- The "1" in "1 + Fraction" is implicit

 $(1 + (s_1 \times 2^{-1}) + (s_2 \times 2^{-2}) + (s_3 \times 2^{-3}) + (s_4 \times 2^{-4}) + \dots)$

The "Bias" is 127 for single-precision and 1023 for double-precision

Examples with single-precision:

S = 0, E = 0x82, F = 0 is:	S = 0, E = 0x83, F = 0x600000 is:
(+1) x (1 + 0) x 2 ⁽¹³⁰⁻¹²⁷⁾	(+1) x (1 + 0.11) x 2 ⁽¹³¹⁻¹²⁷⁾
= 1 x 2 ³ = 8	= 1.11 x 2 ⁴ = 11100 = 28

Useful website: <u>https://www.h-schmidt.net/FloatConverter/IEEE754.html</u>

More Examples!

• Hex word for single-precision F-P is: **0x3FA00000**

• So:

0011 1111 1010 0000 ... 0000

S = 0 E = 0x7F = 127 F = 010...0

• So:

Number = (+1) x (1 + 0.01) x $2^{(127 - 127)}$ = 1.01 (bin) = 1 + 1 x 2^{-2} = **1.25** Yet More Examples!!

• Hex word for single-precision F-P is: **0xBF300000**

• So:

1011 1111 0011 0000 ... 0000

S = 1 E = 0x7E = 126 F = 011...0

• So:

Number = (-1) x (1 + 0.011) x $2^{(126 - 127)}$ = 1.011 (bin) = -(1 + (1 x 2^{-2}) + (1 x 2^{-3})) x 2^{-1} = -(1 + 0.25 + 0.125) x 0.5 = -0.6875

Even More Examples!!!

- What is the single-precision word (in hex) of the F-P number **29.125**?
- Ok, here we go:

```
I am reminded that 0.125 = 2^{-3}
```

And, I know that **29** in binary is: **11101**

So **29.125**₍₁₀₎ = **11101.001**₍₂₎ = **1.1101001 x 2**⁴

This is a positive number, so **S** = **0**

F = 1101001000...0 (23 bits in all)

E = 4 + 127 = 131 = 10000011

• So:

Number in bin = 0 10000011 1101001000...0

or 0100 0001 1110 1001 0...0

= **0x41E90000**

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	1 6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	exponent fraction																														
1 bit	8 bits																23	8 bit	s												

Special Exponent Values

Consider Single-Precision Numbers:

- Exponents **0x00** and **0xFF** are reserved
- Smallest exponent is 1 → Actual exponent = 1 127 = -126
- Smallest fraction is 0
- So, I get $\pm 1.0 \ge 2^{-126} \cong \pm 1.2 \ge 10^{-38}$
- Largest exponent is $0xFE = 254 \rightarrow Actual exp. = 127$
- Largest fraction is 111...11, which approaches 1
- So, I get $\pm 2.0 \times 2^{+127} \cong \pm 3.4 \times 10^{+38}$

- IEEE 754 allows for special symbols to represent "unusual events"
- When **S** = **0**, **E** = **0xFF**, **F** = **0**, IEEE calls the number "*inf*" (i.e. infinity)
- "-*inf*" is when **S** = **1**, **E** = **0xFF**, **F** = **0**
- These are to optionally allow programmers to divide by 0.
- Allows for the result of invalid operations

These are called "Not a Number" or "NaN"

• Example: 0/0 , inf – inf, etc...

Floating-Point Addition

Consider a 4-digit decimal example: **9.999 x 10¹ + 1.610 x 10⁻¹**

- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 x 10¹ + 0.016 x 10¹
- 2. Add significands
 - 10.015 x 10¹
- 3. Normalize result & check for over/underflow
 - 1.0015 x 10²
- 4. Round and renormalize *if necessary* (what? why? Be patient...)
 - 1.002 x 10²

Floating-Point Addition

Consider a 4-digit *binary* example: **1.000 x 2⁻¹ + -1.110 x 2⁻²**

- 1. Align decimal points
 - Shift number with smaller exponent
 - 1.000 x 2⁻¹ + -0.111 x 2⁻¹
- 2. Add significands
 - 0.001 x 2⁻¹
- 3. Normalize result & check for over/underflow
 - 1.000 x 2⁻⁴
- 4. Round and renormalize *if necessary*
 - 1.000 x 2⁻⁴ = 0.0625

Re: Rounding in Binary F-P

- Can we create ANY floating point number in binary?
- What about 0.3333... (i.e. **1/3**)?
- Since we cannot create ALL F-P numbers in binary, rounding (i.e. approximating) is necessary
- Many users are not aware of the approximation because of the way values are displayed
 - The actual stored value is the nearest representable binary fraction

C++ Program to Illustrate Rounding in Binary F-P

```
#include <iostream>
#include <iomanip>
int main()
{
    // Try running the program without the next 2 lines
    // as a comparison. Or change the precision number around.
    std::cout << std::setprecision(30);</pre>
    std::cout << std::fixed;</pre>
    float a = 1.0/3;
    double b = 1.0/3;
    std::cout << a << "\n" << b << "\n";</pre>
    float x = 1.0/10;
    double y = 1.0/10;
    std::cout << x << "\n" << y;</pre>
}
```

Floating-Point Adder Hardware

- Much more complex than integer adder
 - Remember the 4 steps from a couple of slides ago?...
- Doing it in one clock cycle would take too long
 - Would force a slower clock on the system
 - How much we can do in 1 clock cycle is a matter for later discussion
- FP adder usually takes several cycles
 - Can be pipelined for more efficient operation

FP Other Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware (incl. addition) is usually in a *co-processor* & does:
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ← → integer conversion
- Operations usually takes several cycles
 - Can be pipelined

MIPS FP Instructions

	Single-Precision	Double-Precision
Addition	add.s	add.d
Subtraction	sub.s	sub.d
Multiplication	mul.s	mul.d
Division	div.s	div.d
Comparisons Where <i>xx</i> can be Example: c.eq.s	C.XX.S eq, neq, lt, gt,	<pre>c.xx.d le, ge</pre>
Load	lwc1	lwd1
Store	swc1	swd1

Also, F-P branch, true (bc1t) and branch, false (bc1f)

- FP instructions operate only on FP registers
- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

The Floating Point Registers

- MIPS has 32 *separate* registers for floating point:
 - **\$f0**, **\$f1**, etc...
- Paired for double-precision
 - **\$f0/\$f1**, **\$f2/\$f3**, etc...
- Example MIPS assembly code:

lwc1 \$f4, 0(\$sp) # Load 32b F.P. number into F4
lwc1 \$f6, 4(\$sp) # Load 32b F.P. number into F6
add.s \$f2, \$f4, \$f6 # F2 = F4 + F6 single precision
swc1 \$f2, 8(\$sp) # Store 32b F.P. number from F2

Example Code

C++ code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0)); }
```

Assume:

fahr in \$f12, result in \$f0, constants in global memory space (i.e. defined in .data)

Compiled MIPS code:

f2c: lwc1 \$f16, const5
 lwc1 \$f18, const9
 div.s \$f16, \$f16, \$f18
 lwc1 \$f18, const32
 sub.s \$f18, \$f12, \$f18
 mul.s \$f0, \$f16, \$f18
 jr \$ra

YOUR TO-DOs for the Week

•Readings!

•Work on Lab 5!

•Start studying for the midterm!

