

Arithmetic for Computers 2: Floating Point Numbers

CS 154: Computer Architecture
Lecture \#9
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Lab 4 due today!
- Lab 5 out soon
- Syllabus (Schedule Section) has been updated

Midterm Exam (Wed. 2/12)

What's on It?

- Everything we've done so far from start to Monday, 2/10

What Should I Bring?

- Your pencil(s), eraser, MIPS Reference Card (on $\underline{1}$ page)
- You can bring $\underline{1}$ sheet of hand-written notes (turn it in with exam). 2 sides ok.

What Else Should I Do?

- IMPORTANT: Come to the classroom 5-10 minutes EARLY
- If you are late, I may not let you take the exam
- IMPORTANT: Use the bathroom before the exam - once inside, you cannot leave
- Random seat assignments
- Bring your UCSB ID

Lecture Outline

- Floating Point Numbers Representations
- IEEE 754 F-P Standard
- Arithmetic in F-P
- Instructions for F-P
- Hardware implementations

Floating Point

- Representation for non-integral numbers
- Including very small and very large numbers
- Usually follows some "normalized" form
of scientific notation

Floating Point Numbers in CPUs

We need 3 pieces of information to produce a binary floating point number:

$$
+/-\mathrm{N} \times 2^{\mathrm{E}}
$$

The sign of the number (positive or negative)

The mantissa
(aka significand) of the number

The
exponent of the number

Representation in MIPS (Single Precision)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	exponent								fraction																						

- The actual form is: $(-1)^{5} \times(1+$ Fraction $) \times 2^{\text {Exponent - Bias }}$
- Called the IEEE 754 F-P Standard (more on this coming up)
- MIPS design for "single-precision" has:

8 bits for exponent and 23 bits for fraction

- Gives a range from 2.0×10^{-38} to 2.0×10^{38} - quite large!
- Overflow can occur: here it means that the exponent is too large to be represented in the exponent field.
- If a negative exponent is too large, then we get underflow.

Double Precision Floating Points

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
s	exponent												fraction																		
1 bit	11 bits												20 bits																		
fraction (continued)																															

- Single Precision is float in C/C++
- Double Precision is double in $\mathrm{C} / \mathrm{C}++$
- 64 bits (2 words) instead of 32 bits
- 11 bits for exponent (instead of 8)
- 52 bits for fraction (instead of 23)

Gives a wider range and greater precision than single-precision

Range is: 2.0×10^{-308} to 2.0×10^{308}
single: 8 bits double: 11 bits double: 52 bits

IEEE 754 Floating-Point Standard

S	Exponent	Fraction

$x=(-1)^{S} \times(1+$ Fraction $) \times 2^{(\text {Exponent-Bias })}$

- Includes single and double-precision definitions (since 1980s)
- Very widespread in almost all CPUs today
- $S=0 \rightarrow$ positive $S=1 \rightarrow$ negative
- The " 1 " in "1 + Fraction" is implicit

$$
\left(1+\left(s 1 \times 2^{-1}\right)+\left(s 2 \times 2^{-2}\right)+\left(s 3 \times 2^{-3}\right)+\left(s 4 \times 2^{-4}\right)+\ldots\right)
$$

- The "Bias" is $\mathbf{1 2 7}$ for single-precision and 1023 for double-precision

Examples with single-precision:

$$
\begin{array}{ll}
S=0, \quad E=0 \times 82, \quad F=0 \quad \text { is: } & S=0, \quad E=0 \times 83, \quad F=0 \times 600000 \quad \text { is: } \\
(+1) \times(1+0) \times 2^{(130-127)} & (+1) \times(1+0.11) \times 2^{(131-127)} \\
=1 \times 2^{3}=8 & =1.11 \times 2^{4}=11100=\mathbf{2 8}
\end{array}
$$

More Examples!

- Hex word for single-precision F-P is: 0x3FA00000
- So:

$$
\begin{aligned}
& 0011111110100000 \ldots 0000 \\
& S=0 \quad E=0 \times 7 F=127 \quad F=010 \ldots 0
\end{aligned}
$$

- So:

$$
\begin{aligned}
\text { Number } & =(+1) \times(1+0.01) \times 2^{(127-127)}=1.01(\mathrm{bin}) \\
& =1+1 \times 2^{-2}=1.25
\end{aligned}
$$

Yet More Examples!!

$$
\begin{aligned}
& 2^{-1}=0.5 \\
& 2^{-2}=0.25 \\
& 2^{-3}=0.125 \\
& 2^{-4}=0.0625 \\
& 2^{-5}=0.03125
\end{aligned}
$$

- Hex word for single-precision F-P is: OxBF300000
- So:

$$
\begin{aligned}
& 1011111100110000 \ldots 0000 \\
& S=1 \quad E=0 \times 7 E=126 \quad F=011 \ldots 0
\end{aligned}
$$

- So:

$$
\begin{aligned}
\text { Number } & =(-1) \times(1+0.011) \times 2^{(126-127)}=1.011 \text { (bin) } \\
& =-\left(1+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)\right) \times 2^{-1} \\
& =-(1+0.25+0.125) \times 0.5 \\
& =-0.6875
\end{aligned}
$$

Even More Examples!!!

$$
\begin{aligned}
& 2^{-1}=0.5 \\
& 2^{-2}=0.25 \\
& 2^{-3}=0.125 \\
& 2^{-4}=0.0625 \\
& 2^{-5}=0.03125
\end{aligned}
$$

- What is the single-precision word (in hex) of the F-P number 29.125?
- Ok, here we go:

I am reminded that $0.125=2^{-3}$
And, I know that 29 in binary is: 11101
So $\mathbf{2 9 . 1 2 5}_{(10)}=\mathbf{1 1 1 0 1 . 0 0 1}_{(2)}=1.1101001 \times \mathbf{2}^{4}$
This is a positive number, so $\mathbf{S}=\mathbf{0}$
F = 1101001000...0 (23 bits in all)
$E=4+127=131=10000011$

- So:

Number in bin = $0100000111101001000 . . .0$

$$
\begin{aligned}
& \text { or } 01000001111010010 \ldots 0 \\
& \quad=0 \times 41 \text { E90000 }
\end{aligned}
$$

Special Exponent Values

Consider Single-Precision Numbers:

- Exponents 0x00 and 0xFF are reserved
- Smallest exponent is $1 \rightarrow$ Actual exponent $=1-127=-126$
- Smallest fraction is 0
- So, I get $\pm 1.0 \times 2^{-126} \cong \pm 1.2 \times 10^{-38}$
- Largest exponent is 0xFE = $254 \rightarrow$ Actual exp. $=127$
- Largest fraction is $111 . . .11$, which approaches 1
- So, I get $\pm 2.0 \times 2^{+127} \cong \pm 3.4 \times 10^{+38}$

Special IEEE 754 Values

-IEEE 754 allows for special symbols to represent "unusual events"

- When $\mathbf{S}=0, \quad \mathrm{E}=0 \times \mathrm{FF}, \quad \mathrm{F}=0$, IEEE calls the number "inf" (i.e. infinity)
- "-inf" is when $\mathbf{S}=\mathbf{1}, \quad \mathrm{E}=0 \times \mathrm{xFF}, \quad \mathrm{F}=\mathbf{0}$
- These are to optionally allow programmers to divide by 0.
- Allows for the result of invalid operations

These are called "Not a Number" or "NaN"

- Example: 0/0 , inf - inf, etc...

Floating-Point Addition

Consider a 4-digit decimal example: $9.999 \times 10^{\mathbf{1}}+\mathbf{1 . 6 1 0 \times 1 0 ^ { - 1 }}$

1. Align decimal points

- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- 10.015×10^{1}

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary (what? why? Be patient...)

- 1.002×10^{2}

Floating-Point Addition

Consider a 4-digit binary example: $\mathbf{1 . 0 0 0 \times \mathbf { 2 } ^ { - 1 } + \mathbf { - 1 . 1 1 0 } \times \mathbf { 2 } ^ { \mathbf { - 2 } } , ~}$

1. Align decimal points

- Shift number with smaller exponent
- $1.000 \times 2^{-1}+-0.111 \times 2^{-1}$

2. Add significands

- 0.001×2^{-1}

3. Normalize result \& check for over/underflow

- 1.000×2^{-4}

4. Round and renormalize if necessary

- $1.000 \times 2^{-4}=0.0625$

Re: Rounding in Binary F-P

- Can we create ANY floating point number in binary?
- What about 0.3333... (i.e. 1/3)?
- In binary, $1 / 10$ is the infinitely repeating fraction 0.0001100110011001100110011001100110011001100...
- Since we cannot create ALL F-P numbers in binary, rounding (i.e. approximating) is necessary
- Many users are not aware of the approximation because of the way values are displayed
- The actual stored value is the nearest representable binary fraction

C++ Program to Illustrate Rounding in Binary F-P

```
#include <iostream>
#include <iomanip>
int main()
{
    // Try running the program without the next 2 lines
    // as a comparison. Or change the precision number around.
    std::cout << std::setprecision(30);
    std::cout << std::fixed;
    float a = 1.0/3;
    double b = 1.0/3;
    std::cout << a << "\n" << b << "\n";
    float x = 1.0/10;
    double y = 1.0/10;
    std::cout << x << "\n" << y;
}
```


Floating-Point Adder Hardware

- Much more complex than integer adder
- Remember the 4 steps from a couple of slides ago?...
- Doing it in one clock cycle would take too long
- Would force a slower clock on the system
- How much we can do in 1 clock cycle is a matter for later discussion
- FP adder usually takes several cycles
- Can be pipelined for more efficient operation

FP Other Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
- But uses a multiplier for significands instead of an adder
- FP arithmetic hardware (incl. addition) is usually in a co-processor \& does:
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP $\Leftarrow \rightarrow$ integer conversion
- Operations usually takes several cycles
- Can be pipelined

MIPS FP Instructions

	Single-Precision	Double-Precision
Addition	add.s	add.d
Subtraction	sub.s	sub.d
Multiplication	mul.s	mul.d
Division	div.s	div.d
Comparisons Where $x x$ can be Example: c.eq.s	c.xx.s eq, neq, lt, gt,	c. $\mathrm{le}, \mathrm{ge} . \mathrm{d}$
Load	lwc1	lwd1
Store	swc1	swd1

Also, F-P branch, true (bc1t) and branch, false (bc1f)

MIPS FP Instructions

- FP instructions operate only on FP registers
- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

The Floating Point Registers

- MIPS has 32 separate registers for floating point:
- \$f0, \$f1, etc...
- Paired for double-precision
- \$f0/\$f1, \$f2/\$f3, etc...
- Example MIPS assembly code:

```
lwc1 $f4, 0($sp)
# Load 32b F.P. number into F4
lwc1 $f6, 4($sp) # Load 32b F.P. number into F6
add.s $f2, $f4, $f6
# F2 = F4 + F6 single precision
swc1 $f2, 8($sp) # Store 32b F.P. number from F2
```


Example Code

```
C++ code:
    float f2c (float fahr) {
        return ((5.0/9.0)*(fahr - 32.0)); }
```

Assume:
fahr in $\mathbf{\$ f 1 2}$, result in $\mathbf{\$ f 0}$, constants in global memory space (i.e. defined in .data)

Compiled MIPS code:

```
f2c: lwc1 $f16, const5
    lwc1 $f18, const9
    div.s $f16, $f16, $f18
    lwc1 $f18, const32
    sub.s $f18, $f12, $f18
    mul.s $f0, $f16, $f18
    jr $ra
```


YOUR TO-DOs for the Week

- Readings!
- Work on Lab 5!
- Start studying for the midterm!

