
Introduction to CPU Design
CS 154: Computer Architecture

Lecture #10
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Exam on Wednesday, 2/12

• No new lab this week

• Lab #5 is due on Thursday, 2/13 (by 11:59 PM)

2/10/20 Matni, CS154, Wi20 2

Midterm Exam (Wed. 2/12)

What’s on It?
• Everything we’ve done so far from start to Monday, 2/10
• NO CPU DESIGN MATERIAL IN EXAM!

What Should I Bring?
• Your pencil(s), eraser, MIPS Reference Card (on 1 page)
• You can bring 1 sheet of hand-written notes (turn it in with exam). 2 sides ok.

What Else Should I Do?
• IMPORTANT: Come to the classroom 5-10 minutes EARLY
• If you are late, I may not let you take the exam
• IMPORTANT: Use the bathroom before the exam – once inside, you cannot leave
• Random seat assignments
• Bring your UCSB ID

2/10/20 Matni, CS154, Wi20 3

Lecture Outline

•Some examples using F-P Instructions

• Intro to CPU Design

• Understanding the Fetch-Execute Cycle in the Hardware

2/10/20 Matni, CS154, Wi20 4

MIPS FP Instructions

Single-Precision Double-Precision
Addition add.s add.d
Subtraction sub.s sub.d
Multiplication mul.s mul.d
Division div.s div.d
Comparisons

Where xx can be
Example: c.eq.s

c.xx.s
eq, neq, lt, gt,

c.xx.d
le, ge

Load lwc1 lwd1
Store swc1 swd1

2/10/20 Matni, CS154, Wi20 5

Also, F-P branch, true (bc1t) and branch, false (bc1f)

MIPS FP Instructions

• Programs generally don’t do integer ops on FP data,
or vice versa

• FP instructions operate only on FP registers
• There are 32 FP registers – separate from the “regular” CPU

registers

•More registers with minimal code-size impact

2/10/20 Matni, CS154, Wi20 6

The Floating Point Registers

•MIPS has 32 separate registers for floating point:
• $f0, $f1, etc…

• Paired for double-precision
• $f0/$f1, $f2/$f3, etc…

• Example MIPS assembly code:
lwc1 $f4, 0($sp) # Load 32b F.P. number into F4
lwc1 $f6, 4($sp) # Load 32b F.P. number into F6
add.s $f2, $f4, $f6 # F2 = F4 + F6 single precision
swc1 $f2, 8($sp) # Store 32b F.P. number from F2

2/10/20 Matni, CS154, Wi20 7

Example Code

C++ code:
float f2c (float fahr) {

return ((5.0/9.0)*(fahr - 32.0)); }

Assume:
fahr in $f12, result in $f0, constants in global memory space (i.e. defined in .data)

Compiled MIPS code:
f2c: lwc1 $f16, const5

lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

2/10/20 Matni, CS154, Wi20 8

2/10/20 Matni, CS154, Wi20 9

Implementing the Design of a CPU

• CPU performance factors
• Instruction count: Determined by ISA and compiler
• CPI and Cycle time: Determined by CPU hardware

• We will examine two MIPS implementations
• A simplified version
• A more realistic pipelined version

• Simple subset, shows most aspects
• Memory reference: lw, sw
• Arithmetic/logical: add, sub, and, or, slt
• Control transfer: beq, j

2/10/20 Matni, CS154, Wi20 10

The Fetch-Execute Cycle

Execute
Instruction

Store

Fetch
Instruction

Decode
Instruction

2/10/20 Matni, CS154, Wi20 11

ß In the
ALU

ß In registers
OR In memory

ß From
memory

In Control
Unit à

The Instruction Fetch-Execute Cycle

For any instruction, do these 2 things first:
1. Send PC to the memory where instruction is & fetch it
2. Read 1 or 2 registers per rs/rt codes

OR
Read 1 register (for lw/sw instructions)

• What happens next depends on the “instruction class”

There are 3 instruction classes:
1. memory-reference
2. arithmetic-logical
3. branches

2/10/20 Matni, CS154, Wi20 12

The Instruction Fetch-Execute Cycle

Depending on instruction class…
•ALU is almost always the next step.
•Use ALU to calculate:
• Some arithmetic result using Regs
•Memory address for load/store (again, using Regs)
• Branch target address (not so much using Regs)

•Then, the different instruction classes need
different things done…

2/10/20 Matni, CS154, Wi20 13

The Instruction Fetch-Execute Cycle

Per the instruction class…
• Memory-reference type:
• Access data memory for load/store

•Arithmetic-Logical (or load instruction)
•Write data from the ALU or memory back into a register

• Branching
• Change next instruction address based on branch outcome
• Otherwise, the PC = PC + 4

2/10/20 Matni, CS154, Wi20 14

General (and Simplified) CPU Hardware Design

2/10/20 Matni, CS154, Wi20 15

REMEMBER: This is drawn in abstract
blocks, NOT in the exact way the

logic hardware actually is!!

General (and Simplified) CPU Hardware Design

2/10/20 Matni, CS154, Wi20 16

This is actually
decoded and

used to control
all other blocks

ALU out could go to
2 different places

Adder (part of the ALU) for branch addressing
Adder (part of the ALU)

to add 4 to PC

REMEMBER: This is drawn in abstract
blocks, NOT in the exact way the

logic hardware actually is!!

This ALU input could come
from 2 different sources

The PC could get either one
of these adder outputs

A Little More Detail… (Remember Multiplexers?)

2/10/20 Matni, CS154, Wi20 17

2/10/20 Matni, CS154, Wi20 18

Now showing
Muxes and
Control Lines

YOUR TO-DOs for the Week

•Study for the midterm!

•Current lab due on Thursday
•No new Lab this week!

•Next week:
•NO CLASS ON MONDAY (University Holiday)
•Wednesday (2/19) we resume CPU Design (Ch. 4)

2/10/20 Matni, CS154, Wi20 19

2/10/20 Matni, CS154, Wi20 20

