CPU Datapaths 3:
Intro to Pipelining

CS 154: Computer Architecture
Lecture #13
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

 Talk next week — must attend

e Tuesday at 5:00 PM

2/26/20 Matni, CS154, Wi20

Lecture Outline

* Full Single-Cycle Datapaths

* Pipelining

2/26/20 Matni, CS154, Wi20

The Main Control Unit

 Control signals derived (i.e. decoded) from instruction

Field 0 rs rt rd shamt funct

Bit positions 31:26 25:21 20:16 15:11 10:6 5:0
a. R-type instruction)

P write

Field 350r43 rs rt address

Bit positions 31:26 25:21 20:16 15:0
b. Load or store instruction write

Field 4 rs rt address

Bit positions 31:26 25:21 20:16 15:0

c. Branch instruction

2/26/20

opcode
Op[5:0]

always read

Matni, CS154, Wi20

sign extend and add

Full Datapath showing 7 Control Signals

PCSrc
_.\ -0
>Add l M |
X
ALU
4 — Addggyt \1/
RegWrite -
Instruction [25:21] Read ,
Read = : MemWrite
—s-| PC 0> address | register 1 Read
Instruction [20:16] Read data 1 |
. >~ register 2 MemtoReg
Instruction _I

[31:0] Write Read AddressteaE:g (1
Instruction | | |nstruction [15:11] register data 2 M
memory | ¢ X
| Write 0

data Registers Data

RegDst »| Write
™| data memory

Instruction [15:0] 16 Sign- 32 ‘
~ |extend
MemRead
See Fig. 4.16 in book (p.264) Instruction [5:0] |‘

for a description of each signal ALUOp

2/26/20 Matni, CS154, Wi20 5

One Control Unit to Set them All...

PC

— .

Read
address

Instruction

[31-0] [

Instruction
memory

FUNCTION
AND

OR

add

subtract

set-on-less-than

NOR

Instruction [31-26]

Instruction [25-21]
.

+|Control

RegDst
Branch

T~

ALU
>Addresult

/

\ MemRead

my precious

MemtoReg

ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20-16]

.| Read

Instruction [15—11]
[2 >~

Instruction [15-0]

Read

register 1 paag
data 1

register 2

Write
register

Write

data Registers

Read
data 2

y
—‘xcg(b\

16 Sign-

32

A

extend

Instruction [5-0]

N —

Read

Address data

: Data
Write
data Mmemory

Oxc=—

One Control Unit to Set them All...

2/2

6/20

- Let’s do some of these examples:

“add $te, $t1, $t2

addi $a0, $vo, 64

lwf$f64($sp)

" beq $al, $a2, blabel

jal jlabél

my precious

add $to, $t1, $t2

L

> PC
ALUOp FUNCTION
0000 AND
0001 OR
0010 add

subtract

set-on-less-than

NOR

Read
address

Instruction

[31-0] [

Instruction
memory

RegDst
Branch
Zero
MemRead
rd=rs+rt MemtoReg
MemWrite
ALUOp
L_.\ ALUSrc
RegWrite
ALU .
>Addresult -
RegDst /
Branch
\ MemRead
Instruction [31—26] MemtoReg
+(Control ALUOp
MemWrite
ALUSrc
RegWrite
rs = St1 code
Jnstruction [25-21] Read
rt = St2 code |register1 geaq| | S
Instruction [20-16] | Reag data 1
register 2 +rt
Awvrite Read |'F| G Ac];ressﬂd%%g 1
Instruction [15-11] register data2 M m
) X
Write 1’(0
data Registers Wiite Data
data Memory
Instruction [15-0) 16 [gign- | 32
extend/ ° —

Instruction [5-0]

rs +rt

0
1

subtract

set-on-less-than

NOR

Instruction [5-0)

RegDst
Branch
Zero
°
addi $a0, $vO, 64 MemRead
)) rt =rs + immed MemtoReg
MemWrite
X \ ALUOp
| A] ALUSrc
>Add \ .
ALU RegWrite
4 — >Addresult -
RegDst /
Branch
\ MemRead
Instruction [31-26] MemtoReg
+|Control ALUOp
MemWrite
ALUSrc
RegWrite
rs = SvO code
Instruction [25-21] Read
[-~ -
P Road 1Tt = 530 code | redister 1 peaq| | IS
Instruction [20-16] | Rgaq datal
Instruction o | register2 .
. + imme
(31-0] Mlrtwrite Read |41 o AdoTaey dg‘; 1
Instruction | | finstruction [15-11) g register data2 M '{:
memory * =1 . . g X
.| Write 1 : 0
ALUOp FUNCTION data Registers Write Data
" 0000 AND *| data Memory
0001 OR Instruction [15-0] 16 [sign- | 32
0010 add immed = 64 extend| -

rs + immed

0
0
X
0
0
0

0010
1
1

RegDst
Branch
Zero
lw $t0, 4($sp) MemRead
- rt = *‘rs + immed! MemtoReg
MemWrite
. ALUOp
\da L_.\ ALUSrc
RegWrite
4 —» >Add
RegDst /
Branch
\ MemRead
Instruction [31—26] MemtoReg
+|Control ALUOp
MemWrite
ALUSrc
RegWrite
rs = SSP code
Jnstruction 25-21] Read
ggc?r%ss rt = StO code |register1 poaq| | FS
Instruction [20-16] | Reag data 1
Instruction | | o | register2 . :
10 Whtwie Road |11 g timmeds| Yalde
Instruction | | |instruction [15-11] g register data2 M
memory * =1) . u
gvarlte m 1’(
ta Registers . Data
ey
Instruction [15-0] 16 Sign- :\%2
immed =4 extend| —

> PC
ALUOp FUNCTION
0000 AND
0001 OR
0010 add

subtract

set-on-less-than

NOR

Instruction [5-0]

Value @ (rs+immed)

10

0
0
X
1
1
0

0010
1
1

I@ (rs+immed)

beq $al, $a2, blabel

Assume in this example that al = a2

New address

New address

— .

L

> PC
ALUOp FUNCTION
0000 AND

0001

OR

0010

add

0110

subtract

0111
1100

set-on-less-than

NOR

Read
address

Instruction

[31-0] [

Instruction
memory

immed
RegDst

T~

ALU

>Addresult

/

RegDst
Branch
Zero
MemRead
MemtoReg
MemWrite
ALUOp
ALUSrc
RegWrite

Oxc=—

Branch
\ MemRead
Instruction [31-26] o MemtoReg
»| Control ALUOp
MemWrite
ALUSrc
RegWrite
rs = Sa2 code
Instruction [25-21] Read
‘ - 2
rt = Sal code |register1 geaq| | FS
Instruction [20-16] | Rgaq datal
| register 2
0 -r
I\f EWrite Reaczi nt .0 Adsressﬂdﬁg
Instruction [15-11] | ¥ [| register data M
[s -
| write X
data Registers Write Data
data Memory
Instruction [15-0) 16 [sign- §H‘Il meg
iImmed = [abe extend/ ° aa
Instruction [5-0)

11

0
0

R-Type Instruction

2/26/20

Read
address

Instruction
(31-0]

Instruction
memory

Instruction [31-26] c

>

Instruction [25-21]
¢

RegDst
Branch

DAdd

J Y

ALU

result ‘

MemRead

MemtoReg

ontrol ALUOp

MemWrite

| ALUSrc

RegWrite

- Read

Instruction [20-16]

register 1 gpaaq

| Read data 1

I Y

Instruction [15-11
& >

Instruction [15-0)

register 2

Write
register

Write
data Registers

Read
data 2

n"
» 4

1“ [Sign- \ .

o ——>|
|extend)

Instruction [5-0]

Address

Write

gata

_Read

data

Data
memory

Oxc="

Load Instruction

2/26/20

Read
address

Instruction

[31-0] [

Instruction
memory

Instruction [31-26]

*

‘Instruction [25-21]

RegDst
Branch

DAdd

MemRead

MemtoReg

»|Control ALUOp

MemWrite

| ALUSrc

RegWrite

Instruction [20-16)

_ | Read

Instruction [15—11]

Instruction [15-0]

Read
register 1 Raaq

data 1
reqister 2

Write Read
register data 2

Write
data Registers

16 [sign- | 32

N
extend|

Instruction [5-0]

Read

Address data

Data

Write

*| data MEMory

(.jx:g‘

Branch-on-Equal Instruction

2/26/20

Y

\ -0
L—» M
>Add u
X
ALU
4 — >Add result !
RegDst
Branch a
MemRead
Instruction [31-26] MemtoReg
»| Control ALUOp
MemWrite
ALUSrc
RegWrite
Instruction [25-21] Read
Read 1 " | register 1 Road
address _ ea
Instruction [20-186] Reag datal
Instruction | 7 | register2
[31-0] M| | write Read 0 Address P;':fd —(
Instruction | | f|nsiction 1511 2’ register data 2 M e M
memory ||¢ ‘ -1 u X
l_> Write & ,x 0
data Registers Write Data
~| Gata memory
Instruction [15-0] 16 [sign- | 32
extend/ °
Instruction [5-0)

Reminder: Implementing Jumps

Jump 2 address
31:26 25:0

* Jump uses word address

* Update PC with concatenation of 4 MS bits of old PC,
26-bit jump address, and 00 at the end

* Need an extra control signal decoded from opcode

* Need to implement a couple of other logic blocks...

2/26/20 Matni, CS154, Wi20 15

Jump Instruction

2/26/20

N

Read
address

Instruction
[31-0]

Instruction
memory

Instruction [25-0] Jump address [31-0]
Shift\,
~ N
7
28 | pC+4[31-28) . 0
)\ T~ M
~ u
1 X
ALU N
N\ "AddreSLlltJ J
RegDst [Shift) -
Jump "’-'\e" 5)’ _— \
Branch ot /
MemRead
Instruction [31-26] l MemtoReg
*| Control TGP
MemWrite
| ALUSrc
RegWrite
Instruction [25-21] | Read
t | register 1 gaaq ~——
Instruction [20-16] | Read data 1 - \2*;\
nu 1 6\f register 2 \ALU ero
M Write Read (0) ALL:I AddrcggReaC B
u data 2 - result data M
Instruction [15-11]| x | | register ~ M - u
¢ 1) : 5 — X
\1_’ Write N - oy
data Registers Write Data o
o data memory
Instruction [15-0] 16 [Sign- \\l 32
\extend/
\ /
_ /

Instruction [5-0]

Performance Issues

* Longest delay determines clock period
* Critical path: load instruction
* Goes:

Instruction memory = register file > ALU - data memory 2>
register file

* Not feasible to vary period for different instructions

* Violates design principle
* Making the common case fast

* We can/will improve performance by pipelining

2/26/20 Matni, CS154, Wi20

17

Pipelining Analogy

* Pipelined laundry: overlapping execution

* An example of how parallelism improves performance

T o 1+ 4 10als speedled up:

Task

orde:\ .g. . From 8 hI’S tO 3-5 hrs
z lﬁﬂﬁ..ﬁ' e Speed-up factor: 2.3
; S0=0

But for infinite loads:

* Speed-up factor = 4
= number of stages

18

Pipelining Analogy

* Pipelined laundry: overlapping execution

* An example of how parallelism improves throughput performance

6 PM 7 1 12 1 2 AM

Tine — oy oy | * 4 loads speeded up:
Task
e B0=H * From 8 hrs to 3.5 hrs
. 80=(S .
= e Speed-up factor: 2.3
. 0= PSRl
0 B0
6PM 7 8 9 10 11 12 1 2 AM But for infinite loads:

fime 1 1 |
—m * Speed-up factor = 4

Task
Bc= = number of stages

order
A
80l
@
19
B0

o O @

MIPS Pipeline

Five stages, one step per stage

1. IF: Instruction fetch from memory
2. ID: Instruction decode & register read
3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

2/26/20 Matni, CS154, Wi20 20

Pipeline Performance

e Assume time for stages is

* 100ps for register read or write

» 200ps for other stages

* Compare pipelined datapath with single-cycle datapath

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

SW 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 9500ps

2/26/20

Matni, CS154, Wi20

21

Comparison of Per-Instruction Time

Tc =800 ps

Tc =200 ps

Program
execution . 200 400 600 800 1000 1200 1400 1600 1800
Order T I I I I I I I I I
(in instructions)

w $1, 100(30)| ST |Reg| ALU | D22 | Reg

lw $2, 200($0) 800 ps gl 17| I

w $3, 300($0) 800 ps ishrucion

800 ps

Program

execution 200 400 600 800 1000 1200 1400

Time 1 1 1 1 1 1 1 -

order

(in instructions)

w $1, 100(30) |™SIMCION) 1 Reg| ALy | D3 geg

w $2,200(30) 200 ps |G| |Reg| A | M2 |Reg

w $3, 300(30) 200 ps | "hacton | |Reg | ALU | D22 IReg

Y

200ps 200 ps 200 ps 200 ps 200 ps

Improvement

* In the previous example, per-instruction improvement was 4x
* 800 ps to 200 ps

 But total execution time went from 2400 ps to 1400 ps (~1.7x imp.)

* That’s because we’re only looking at 3 instructions...

 What if we looked at 1,000,003 instructions?
» Total execution time = 1,000,000 x 200 ps + 1400 ps = 200,001,400 ps
* In non-pipelined, total time = 1,000,000 x 800 ps + 2400 ps = 800,002,400 ps

* Improvement = 800,002,400 ps =4.00
200,001,400 ps

2/26/20 Matni, CS154, Wi20 23

About Pipeline Speedup

* |If all stages are balanced, i.e. all take the same time

* Time between instructions (pipelined)
= Time between instructions (non-pipelined) / # of stages

* If not balanced, speedup will be less

* Speedup is due to increased throughput,
but instruction latency does not change

2/26/20 Matni, CS154, Wi20 24

MIPS vs Others’ Pipelining

MIPS (and RISC-types in general) simplification advantages:
* All instructions are the same length (32 bits)
* x86 has variable length instructions (8 bits to 120 bits)

* MIPS has only 3 instruction formats (R, I, J) —rs fields all in
the same place

* X86 requires extra pipelines b/c they don’t

* Memory ops only appear in load/store
* X86 requires extra pipelines b/c they don’t

2/26/20 Matni, CS154, Wi20 25

YOUR TO-DOs for the Week

eLab 6 due soon...

2/26/20 Matni, CS154 , Wi20

2/26/20

</LECTURE>

Matni, CS154, Wi20

27

