
CPU Datapaths 3:
Intro to Pipelining

CS 154: Computer Architecture
Lecture #13
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Talk next week – must attend
• Tuesday at 5:00 PM

2/26/20 Matni, CS154, Wi20 2

Lecture Outline

• Full Single-Cycle Datapaths

• Pipelining

2/26/20 Matni, CS154, Wi20 3

The Main Control Unit

• Control signals derived (i.e. decoded) from instruction

2/26/20 Matni, CS154, Wi20 4

opcode
Op[5:0]

always read sign extend and add

write

write

2/26/20 Matni, CS154, Wi20 5

Full Datapath showing 7 Control Signals

See Fig. 4.16 in book (p.264)
for a description of each signal

One Control Unit to Set them All… my precious

2/26/20 Matni, CS154, Wi20 6

One Control Unit to Set them All… my precious

2/26/20 Matni, CS154, Wi20 7

Let’s do some of these examples:

add $t0, $t1, $t2

addi $a0, $v0, 64

lw $t0, 4($sp)

beq $a1, $a2, blabel

jal jlabel

add $t0, $t1, $t2

2/26/20 Matni, CS154, Wi20 8

rs = $t1 code

rt = $t2 code

rd = $t0 code

RegDst 1
Branch 0
Zero X
MemRead 0
MemtoReg 0
MemWrite 0
ALUOp 0010
ALUSrc 0
RegWrite 1

rs + rt

rs + rt

rs

rt

rd = rs + rt

rd

addi $a0, $v0, 64

2/26/20 Matni, CS154, Wi20 9

rs = $v0 code

rt = $a0 code

RegDst 0
Branch 0
Zero X
MemRead 0
MemtoReg 0
MemWrite 0
ALUOp 0010
ALUSrc 1
RegWrite 1

rs + immed

rs + immed

rs

immed = 64

immed

rt = rs + immed

rt

lw $t0, 4($sp)

2/26/20 Matni, CS154, Wi20 10

rs = $sp code

rt = $t0 code

RegDst 0
Branch 0
Zero X
MemRead 1
MemtoReg 1
MemWrite 0
ALUOp 0010
ALUSrc 1
RegWrite 1

Value @ (rs+immed)

rs + immed

rs

immed = 4

immed

rt = *(rs + immed)

Value @ (rs+immed)
rt

beq $a1, $a2, blabel

2/26/20 Matni, CS154, Wi20 11

rs = $a2 code

rt = $a1 code

RegDst 1
Branch 1
Zero 1
MemRead 0
MemtoReg 0
MemWrite 0
ALUOp 0110
ALUSrc 0
RegWrite 0

rs - rt

rs

immed = label

rt rt

immed

immed

Assume in this example that a1 = a2
New address

New address

2/26/20 Matni, CS154, Wi20 12

R-Type Instruction

2/26/20 Matni, CS154, Wi20 13

Load Instruction

2/26/20 Matni, CS154, Wi20 14

Branch-on-Equal Instruction

Reminder: Implementing Jumps

• Jump uses word address
• Update PC with concatenation of 4 MS bits of old PC,

26-bit jump address, and 00 at the end

•Need an extra control signal decoded from opcode
•Need to implement a couple of other logic blocks…

2/26/20 Matni, CS154, Wi20 15

2/26/20 Matni, CS154, Wi20 16

Jump Instruction

Performance Issues

• Longest delay determines clock period
• Critical path: load instruction
• Goes:

Instruction memory à register file à ALU à data memory à
register file

• Not feasible to vary period for different instructions

• Violates design principle
• Making the common case fast

•We can/will improve performance by pipelining

2/26/20 Matni, CS154, Wi20 17

Pipelining Analogy

• Pipelined laundry: overlapping execution
• An example of how parallelism improves performance

2/26/20 Matni, CS154, Wi20 18

• 4 loads speeded up:
• From 8 hrs to 3.5 hrs
• Speed-up factor: 2.3

But for infinite loads:
• Speed-up factor ≈ 4

= number of stages

Pipelining Analogy

• Pipelined laundry: overlapping execution
• An example of how parallelism improves throughput performance

2/26/20 Matni, CS154, Wi20 19

• 4 loads speeded up:
• From 8 hrs to 3.5 hrs
• Speed-up factor: 2.3

But for infinite loads:
• Speed-up factor ≈ 4

= number of stages

MIPS Pipeline

Five stages, one step per stage

1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

2/26/20 Matni, CS154, Wi20 20

Pipeline Performance

• Assume time for stages is
• 100ps for register read or write
• 200ps for other stages

• Compare pipelined datapath with single-cycle datapath

2/26/20 Matni, CS154, Wi20 21

Comparison of Per-Instruction Time

22

Tc = 800 ps

Tc = 200 ps

Improvement

• In the previous example, per-instruction improvement was 4x
• 800 ps to 200 ps

• But total execution time went from 2400 ps to 1400 ps (~1.7x imp.)
• That’s because we’re only looking at 3 instructions…

•What if we looked at 1,000,003 instructions?
• Total execution time = 1,000,000 x 200 ps + 1400 ps = 200,001,400 ps
• In non-pipelined, total time = 1,000,000 x 800 ps + 2400 ps = 800,002,400 ps
• Improvement = 800,002,400 ps ≈ 4.00

2/26/20 Matni, CS154, Wi20 23

200,001,400 ps

About Pipeline Speedup

• If all stages are balanced, i.e. all take the same time
• Time between instructions (pipelined)

= Time between instructions (non-pipelined) / # of stages

• If not balanced, speedup will be less

•Speedup is due to increased throughput,
but instruction latency does not change

2/26/20 Matni, CS154, Wi20 24

MIPS vs Others’ Pipelining

MIPS (and RISC-types in general) simplification advantages:
• All instructions are the same length (32 bits)
• x86 has variable length instructions (8 bits to 120 bits)

•MIPS has only 3 instruction formats (R, I, J) – rs fields all in
the same place
• x86 requires extra pipelines b/c they don’t

•Memory ops only appear in load/store
• x86 requires extra pipelines b/c they don’t

2/26/20 Matni, CS154, Wi20 25

YOUR TO-DOs for the Week

•Lab 6 due soon…

2/26/20 Matni, CS154, Wi20 26

2/26/20 Matni, CS154, Wi20 27

