
Pipelining 1
CS 154: Computer Architecture

Lecture #14
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Talk is on MONDAY, MARCH 9th in our usual class
• Will take attendance…

• We “only” have 3 more lectures… L please everybody control your emotions…

• Pipelining and start w/ Memory Caching

• Final Exam info:

• Tuesday, March 17th at 12:00 (not 12:30!!!) in this classroom

• Arrive 10 mins early – randomized seating…

• Cumulative Exam

• Will allow some notes – exact details to follow

• Study guide/example Qs will be issued by this weekend

3/3/20 Matni, CS154, Wi20 2

Lecture Outline

• Data Hazards in Pipelining

• Pipeline Designs and Operation

• Examples with some Instructions

• Diagramming Pipelined Instructions

• Control Lines for Pipelines

3/3/20 Matni, CS154, Wi20 3

Comparison of Per-Instruction Time

4

Hazards

• Situations that prevent starting the next instruction in the
next cycle

• Structure hazards
• A required resource is busy

• Data hazard
• Need to wait for previous instruction to complete its data read/write

• Control hazard
• Deciding on control action depends on previous instruction

3/3/20 Matni, CS154, Wi20 5

Structure Hazards

• Conflict for use of a resource

• In MIPS pipeline with a single memory
• Load/store requires data access
• Instruction fetch would have to stall for that cycle
• Would cause a pipeline “bubble”

• Hence, pipelined datapaths require separate
instruction/data memories
• Or separate instruction/data caches

3/3/20 Matni, CS154, Wi20 6

Data Hazards

• An instruction depends on completion of data access by a previous
instruction

Example 1:
add $s0, $t0, $t1
sub $t2, $s0, $t3

“Forwarding”: possible if destination stage is later in time than source stage

3/3/20 Matni, CS154, Wi20 7

Forwarding: Use result
when it is computed
• Don’t wait for it to be stored

in a register
• Requires extra connections

in the datapath

Data Hazards

Example 2:
lw $s0, 20($t1)
sub $t2, $s0, $t3

“Forwarding”: not possible in this example, UNLESS …

3/3/20 Matni, CS154, Wi20 8

Cannot
“forward”

back in
time!!

Data Hazards

Example 2:
lw $s0, 20($t1)
sub $t2, $s0, $t3

“Forwarding”: not possible in this example, UNLESS we put in a stalling
instruction (aka pipeline stall or bubble) between them
3/3/20 Matni, CS154, Wi20 9

Code Scheduling to Avoid Stalls

• Reorder code to avoid use of load result in the next
instruction
• Example: C++ code for a = b + e;

c = b + f;

3/3/20 Matni, CS154, Wi20 10

lw $tl, 0($t0)
lw $t2, 4($t0)
add $t3, $tl, $t2
sw $t3, 12($t0)
lw $t4, 8($t0)
add $t5, $tl, $t4
sw $t5, 16($t0)

lw $tl, 0($t0)
lw $t2, 4($t0)
lw $t4, 8($t0)
add $t3, $tl, $t2
sw $t3, 12 ($t0)
add $t5, $tl,$t4
sw $t5, 16 ($t0)

Move here and save 2 cycles

Original Re-Ordered

Control Hazard

• Comes from need to make a decision based on the results of one
instruction while others are executing
• Think of the laundry example if we were worried that the soap amount

was enough based on how clean the loads come out…

• Branch determines flow of control
• Fetching next instruction depends on branch outcome
• Pipeline can’t always fetch correct instruction because it is still working

on ID stage of branch

• In MIPS pipeline
• Need to compare registers and compute target early in the pipeline
• Needs added hardware to do it in ID stage

3/3/20 Matni, CS154, Wi20 11

Possible Solution: Stall on Branch

•Wait until branch outcome is determined before fetching next
instruction
• Since the pipeline cannot possibly know what the next instruction should

be, since it only just received the branch instruction from memory

3/3/20 Matni, CS154, Wi20 12

This is the instruction
after branching:

Better Solution: Predict the Branch!

• Predict outcome of branch
• Only stalls if prediction is wrong
• This option does not slow down the pipeline when it’s correct!

• In MIPS pipeline,
it is simplest to predict if branches are not taken

• When correct, the pipeline proceeds at full speed
• When branches are taken, then the pipeline purposely stalls
• Fetch instruction after branch, with no delay

3/3/20 Matni, CS154, Wi20 13

MIPS with Predict Not Taken

3/3/20 Matni, CS154, Wi20 14

Prediction
Correct
that “branch not
needed”

Prediction
Incorrect
that “branch not
needed”
(simplified e.g.)

MIPS with Predict Not Taken

3/3/20 Matni, CS154, Wi20 15

Prediction
Correct
that “branch not
needed”

Prediction
Incorrect
that “branch not
needed”
(simplified e.g.)

More-Realistic Branch Predictions

• Static branch prediction
• Based on “typical” branch behavior
• Example: loop and if-statement branches

• Predict backward branches taken
• Predict forward branches not taken

• Not the best, but better than always predicting no-branch…

• Dynamic branch prediction
• Hardware measures actual branch behavior

• e.g., it record recent history of each branch
• Assume future behavior will continue the trend

• When wrong, stall while re-fetching, and update history
• Tends to be accurate ~90% of the time

3/3/20 Matni, CS154, Wi20 16

Pipeline Summary

• Pipelining improves performance by increasing instruction
throughput
• Executes multiple instructions in parallel
• Each instruction still has the same latency

• Subject to hazards
• Structure, data, control

• Instruction set design affects complexity of pipeline
implementation

3/3/20 Matni, CS154, Wi20 17

3/3/20 Matni, CS154, Wi20 18

MIPS Pipelined Datapath: Requirements
Based on Single-Cycle Datapath Design…

Example

• Instructions executed using the single-cycle datapath
assuming pipelined execution.
• In laundry analogy, we might have a basket between each pair of

stages to hold the clothes for the next step

3/3/20 Matni, CS154, Wi20 19

3/3/20 Matni, CS154, Wi20 20

MIPS Pipelined Datapath

Need registers between stages to hold information
produced in previous cycle

3/3/20 Matni, CS154, Wi20 21

MIPS Pipelined Datapath for lw instruction: IF
• Highlight the right half of registers or memory

when they are being read
• Highlight the left half when they are being written

3/3/20 Matni, CS154, Wi20 22

MIPS Pipelined Datapath for lw instruction: IF

• Instruction is read from memory using
the address in the PC

• Placed in the IF/ID pipeline register.

• PC address is incremented by 4 and
then written back into the PC to be
ready for the next clock cycle.

• Incremented address is also saved in
the IF/ID pipeline register

• It could be needed later for an
instruction, such as beq
(i.e. for prediction)

• Highlight the right half of registers or memory
when they are being read

• Highlight the left half when they are being written

3/3/20 Matni, CS154, Wi20 23

MIPS Pipelined Datapath for lw instruction: ID

3/3/20 Matni, CS154, Wi20 24

MIPS Pipelined Datapath for lw instruction: ID

• Instruction portion of the IF/ID
pipeline register supplies the:

• 16b immed. field (then sign
extended)

• 2 register numbers to read

• All three values are stored
in the ID/EX pipeline reg.
(along w/ PC address)

• Transfer everything that might be
needed by any instruction during a
later clock cycle.

3/3/20 Matni, CS154, Wi20 25

MIPS Pipelined Datapath for lw instruction: EX

3/3/20 Matni, CS154, Wi20 26

MIPS Pipelined Datapath for lw instruction: EX

• Instruction reads the contents of
register 1 and the sign-extended
immediate from the ID/EX pipeline
register and adds them using the ALU.

• Sum is placed in the EX/MEM
pipeline register.

3/3/20 Matni, CS154, Wi20 27

MIPS Pipelined Datapath for lw instruction: MEM

3/3/20 Matni, CS154, Wi20 28

MIPS Pipelined Datapath for lw instruction: MEM

• Instruction reads the data memory
using the address from the EX/MEM
pipeline register

• Loads the data into the MEM/WB
pipeline register.

3/3/20 Matni, CS154, Wi20 29

MIPS Pipelined Datapath for lw instruction: WB

3/3/20 Matni, CS154, Wi20 30

MIPS Pipelined Datapath for lw instruction: WB

• Instruction reads data from the
MEM/WB pipeline register.

• Writes it back into the register file.

What could be
wrong here?

• The instruction in the IF/ID pipeline register supplies the write register number (rd),
BUT the “writing” occurs at the end of the load instruction!

• We need to preserve the rd number in the load instruction…

3/3/20 Matni, CS154, Wi20 31

Corrected Pipelined Datapath
Otherwise load instruction wouldn’t work properly…

Summary (so far)

• To pass something from an early pipe stage to a later pipe
stage, the information must be placed in a pipeline register
• Otherwise, the information is lost when the next instruction enters

that pipeline stage.

• Each logical component of the datapath can be used only
within a single pipeline stage.

•We have seen 2 types of representations:
• multiple-clock-cycle pipeline diagrams Overview, fewer details
• single-clock-cycle pipeline diagrams Full details

3/3/20 Matni, CS154, Wi20 32

3/3/20 Matni, CS154, Wi20 33

Multiple-Clock-Cycle Pipeline Diagrams of Five Instructions

3/3/20 Matni, CS154, Wi20 34

Single-Clock-Cylce Pipeline Diagram of Five Instructions
Corresponding to Clock Cycle 5

Simplified Pipeline Control Diagram (seems familiar?)

3/3/20 Matni, CS154, Wi20 35

Control Lines for the Last 3 Pipeline Stages

3/3/20 Matni, CS154, Wi20 36

These are
derived from
the instruction

Same control signals that we
learned earlier, but this time they
are “ferried” across the pipelines
See tables in Fig. 4.48, 4.49 in textbook

YOUR TO-DOs for the Week

• Finish Lab 7 by Sunday

• New Lab 8 (last one!) will be issued later on
this week
• Due next week, which is last week of classes… L

3/3/20 Matni, CS154, Wi20 37

3/3/20 Matni, CS154, Wi20 38

