
Pipelining 2
CS 154: Computer Architecture

Lecture #15
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Talk is on MONDAY, MARCH 9th in our usual class
• Will take attendance…

• Final Exam info:

• Tuesday, March 17th at 12:00 (not 12:30!!!) in this classroom

• Arrive 10 mins early – randomized seating…

• Cumulative Exam

• Will allow some notes – exact details to follow

• Study guide/example Qs will be issued by this weekend

3/4/2020 Matni, CS154, Wi20 2

Re: Labs

•Lab 7 still due on Sunday
•Lab 8 will be issued soon
•There IS a lab THIS Friday
•Re: lab NEXT Friday…

3/4/2020 Matni, CS154, Wi20 3

Lecture Outline

• Data Hazards in Pipelining: Forwarding vs Stalling

• Control Hazards: Branch Prediction

3/4/2020 Matni, CS154, Wi20 4

Control Lines for the Last 3 Pipeline Stages

3/4/2020 Matni, CS154, Wi20 5

These are
derived from
the instruction

Same control signals that we
learned earlier, but this time they
are “ferried” across the pipelines
See tables in Fig. 4.48, 4.49 in textbook

3/4/2020 Matni, CS154, Wi20 6

Pipelined Datapath Showing Control Signals

Another Look at Data Hazards

• Consider this sequence:
sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• All of the instructions after sub are dependent on the result
in register $2 of the first instruction.

3/4/2020 Matni, CS154, Wi20 7

3/4/2020 Matni, CS154, Wi20 8

Let’s say that reg. $2 has value 10 at first, but that the sub instruction changes that to -20.

This diagram shows that the instructions that would get the correct value of −20 are
add and sw, while the AND and OR instructions would get the incorrect value 10!

We could resolve these hazards using forwarding
But how do we detect when to forward?

Forwarding vs. Stalling

• We could stall using bubbles…
(inefficient)

• …or we could forward the data as soon
as it is available to any units that need it
before it is available to read in the WB
stage

• Let’s only consider forwarding to an
operation in the EX stage

• That is, either an ALU operation or an address
calculation

3/4/2020 Matni, CS154, Wi20 9

A Word on Some Notation to Use…

Example: ID/EX.RegisterRs

• Refers to the number of a register whose value is
found in the pipeline register ID/EX

• The 1st part is the name of the pipeline register (ID/EX)
• the 2nd part is the name of the field in that register (Rs)

• ALU operand register numbers in EX stage are given
by ID/EX.RegisterRs and ID/EX.RegisterRt

3/4/2020 Matni, CS154, Wi20 10

Data Hazards Occur When…

3/4/2020 Matni, CS154, Wi20 11

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

1st hazard here is on register $2, between the
result of sub and AND instructions.

This hazard can be detected when the AND
instruction is in the EX stage and the sub
instruction is in the MEM stage, so this is
hazard 1a:
EX/MEM.RegisterRd = ID/EX.RegisterRs = $2

Detecting the Need to Forward

• These comparisons are not enough, though!
• Some instructions don’t write to registers

• Solution: see if the RegWrite control signal will be active
• Additionally, check that:

3/4/2020 Matni, CS154, Wi20 12

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs ≠ $zero
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt ≠ $zero

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs ≠ $zero
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt ≠ $zero

Forwarding Paths (simplified)

3/4/2020 Matni, CS154, Wi20 13

See Fig. 4.55 in textbook for full
explanation of the mux selects
ForwardA and ForwardB

Forwarding Conditions

3/4/2020 Matni, CS154, Wi20 14

Double Data Hazards!

• Consider the sequence:
add $1, $1, $2
add $1, $1, $3
add $1, $1, $4

• Both hazards conditions occur at once!
• We want to use the most recent value in $1
• We have to revise the MEM hazard condition

• Only forward if EX hazard condition isn’t true

3/4/2020 Matni, CS154, Wi20 15

Revised Forwarding Condition

3/4/2020 Matni, CS154, Wi20 16

3/4/2020 Matni, CS154, Wi20 17

Pipelined Datapath Modified
To Resolve Hazards Via Forwarding

3/4/2020 Matni, CS154, Wi20 18

Load-Use Data Hazard
A case where forwarding will not work is when
an instruction tries to read a register following a
load instruction that writes the same register.

Hazard Detection

• We also need a “Hazard Detection Unit”!
• It operates during the ID stage so that it can insert the stall

between the load and its use.
• ALU operand register numbers in ID stage are given by

IF/ID.RegisterRs, IF/ID.RegisterRt

• Has one thing to check:

3/4/2020 Matni, CS154, Wi20 19

How to Stall the Pipeline

• Force control values in ID/EX register to 0
• EX, MEM and WB do a nop (no-operation)

• Prevent update of PC and IF/ID register
• Current instruction is decoded again
• Following instruction is fetched again
• 1-cycle stall allows MEM to read data for lw
• Can subsequently forward to EX stage

3/4/2020 Matni, CS154, Wi20 20

3/4/2020 Matni, CS154, Wi20 21

How Stalls Are Actually Done…

Compiler vs Hardware Stalls

• Compilers usually rely on the hardware to resolve
hazards

• Sometimes compilers take measures to avoid some types
of hazards

• BUT a compiler must understand the pipeline to
achieve the best performance.

• Otherwise, unexpected stalls will reduce the performance
of the compiled code.

3/4/2020 Matni, CS154, Wi20 22

3/4/2020 Matni, CS154, Wi20 23

Pipelined Datapath Modified
To Resolve Hazards Via Forwarding OR Stalling

Control Hazards

• Pipeline hazards involving branches

• An instruction must be fetched at every clock cycle to sustain
the pipeline

• Buy the decision about whether to branch doesn’t occur until the
MEM pipeline stage

• Stalling until the branch is complete is too slow

• Control hazards occur less frequently than data hazards
• We end up using simpler schemes.

3/4/2020 Matni, CS154, Wi20 24

Prediction Scheme 1: Assume branch not taken

• Continue execution down the sequential instruction stream.

• If the branch is taken, the instructions that are being fetched
and decoded must now be discarded (flushed)

• Execution continues at the branch target.

• If the branch is untaken half the time, and if it costs little to
discard the instructions, this optimization halves the cost of
control hazards

3/4/2020 Matni, CS154, Wi20 25

Prediction Scheme 1.5: Reduce the Delays

• That is, reduce the cost of the taken branch
• Main idea: if we move the branch execution earlier in the

pipeline (from MEM), then fewer instructions need be
discarded.

• Many branches rely only on simple tests (equality or sign)
• Such tests do not require a full ALU operation
• Can be done with at most a few gates.

• For more complex branch decisions use a separate
instruction that uses an ALU to perform a comparison

3/4/2020 Matni, CS154, Wi20 26

What Needs to be Done?

2 actions have to occur:
• Computing the branch target address earlier

• Easy fix: we move the branch adder from the EX stage to the ID stage

• Evaluating the branch decision earlier
• Harder to do…
• For branch equal, we would compare the two registers read during

the ID stage to see if they are equal.
• Can be done with 1 XOR and 1 OR gate (32b gates).

• Implies additional forwarding and hazard detection hardware…

3/4/2020 Matni, CS154, Wi20 27

Example

• Consider this code:

• Assume that, in this example, the branch will be taken

3/4/2020 Matni, CS154, Wi20 28

3/4/2020 Matni, CS154, Wi20 29

Using Simple Forwarding in Branches

• If a comparison register is a destination of a 2nd or 3rd

preceding ALU instruction

• Can resolve using forwarding

3/4/2020 Matni, CS154, Wi20 30

Dynamic Branch Prediction

• In deeper and superscalar pipelines, branch penalty is more
significant, so dynamic prediction is used, needing:

• Branch prediction buffer (aka branch history table)
• Indexing by recent branch instruction addresses
• Store outcome (taken/not taken)
• To execute a branch, then:

• Check table, expect the same outcome
• Start fetching from fall-through or target
• If wrong, flush pipeline and flip prediction

3/4/2020 Matni, CS154, Wi20 31

1-bit Predictor

• A branch prediction buffer is a small memory indexed by the
lower portion of the address of the branch instruction.

• The memory contains a bit that says whether the branch was
recently taken or not.

• Very simple
• Remember: a prediction is just an “educated” guess – a hint we hope is

correct

• If the hint turns out to be wrong:
• the incorrectly predicted instructions are deleted
• the prediction bit is inverted and stored back
• the proper sequence is fetched and executed.

3/4/2020 Matni, CS154, Wi20 32

Downsides to a 1-bit Predictor

• You could get a sequence of wrong predictions!
• Example:

• Mis-predict taken on last iteration of the inner loop
• Then mis-predict (as in “do not take”) on first iteration of

inner loop next time around

3/4/2020 Matni, CS154, Wi20 33

A Better Way? Use a 2-bit Predictor

• Only change prediction on two successive mis-predictions

3/4/2020 Matni, CS154, Wi20 34

3/4/2020 Matni, CS154, Wi20 35

Final Pipelined Datapath
Showing Hazard and Forwarding Detection

YOUR TO-DOs for the Week

• Finish Lab 7 by Sunday

• New Lab 8 (last one!) will be issued Thursday
• Due next week, which is last week of classes… 

3/4/2020 Matni, CS154, Wi20 36

3/4/2020 Matni, CS154, Wi20 37

	Pipelining 2
	Administrative
	Re: Labs
	Lecture Outline
	Control Lines for the Last 3 Pipeline Stages
	Slide Number 6
	Another Look at Data Hazards
	Slide Number 8
	Forwarding vs. Stalling
	A Word on Some Notation to Use…
	Data Hazards Occur When…
	Detecting the Need to Forward
	Forwarding Paths (simplified)
	Forwarding Conditions
	Double Data Hazards!
	Revised Forwarding Condition
	Slide Number 17
	Slide Number 18
	Hazard Detection
	How to Stall the Pipeline
	Slide Number 21
	Compiler vs Hardware Stalls
	Slide Number 23
	Control Hazards
	Prediction Scheme 1: Assume branch not taken
	Prediction Scheme 1.5: Reduce the Delays
	What Needs to be Done?
	Example
	Slide Number 29
	Using Simple Forwarding in Branches
	Dynamic Branch Prediction
	1-bit Predictor
	Downsides to a 1-bit Predictor
	A Better Way? Use a 2-bit Predictor
	Slide Number 35
	YOUR TO-DOs for the Week
	Slide Number 37

